1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
const2013 [10]
2 years ago
7

-4x = -28 I need an answer...

Mathematics
1 answer:
Strike441 [17]2 years ago
7 0

Answer:

x = 7

Step-by-step explanation:

-4x/-4 = -28/-4

x = 7

You might be interested in
what is the greatest place value position where the digits differ? what does that mean if we use it in decimal?
Brums [2.3K]
The Tenths place because it's the first
6 0
3 years ago
A scientist planted seeds in 4 sections of soil for experiment. Not alll of the seeds grew into the plant .after 20 days, the sc
Karolina [17]
What is the question? no question has been asked. need more info to solve.
3 0
3 years ago
If the equation 3x-5y=-3, what is the value of y when x is 1
pantera1 [17]
The answer is: 6/5

Here is why:
3x - 5y = -3
3(1) - 5y = -3
3 - 5y = -3
3 - 5(6/5) = -3
-3 = -3

6 0
3 years ago
Implicit differentiation Please help
Anvisha [2.4K]

Answer:

y''(-1) =8

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-xy - 2y = -4

Rate of change of the tangent line at point (-1, 4)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Product Rule/Basic Power Rule]:                            -y - xy' - 2y' = 0
  2. [Algebra] Isolate <em>y'</em> terms:                                                                               -xy' - 2y' = y
  3. [Algebra] Factor <em>y'</em>:                                                                                       y'(-x - 2) = y
  4. [Algebra] Isolate <em>y'</em>:                                                                                         y' = \frac{y}{-x-2}
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-y}{x+2}

<u>Step 3: Find </u><em><u>y</u></em>

  1. Define equation:                    -xy - 2y = -4
  2. Factor <em>y</em>:                                 y(-x - 2) = -4
  3. Isolate <em>y</em>:                                 y = \frac{-4}{-x-2}
  4. Simplify:                                 y = \frac{4}{x+2}

<u>Step 4: Rewrite 1st Derivative</u>

  1. [Algebra] Substitute in <em>y</em>:                                                                               y' = \frac{-\frac{4}{x+2} }{x+2}
  2. [Algebra] Simplify:                                                                                         y' = \frac{-4}{(x+2)^2}

<u>Step 5: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}
  2. [Derivative] Simplify:                                                                                      y'' = \frac{8}{(x+2)^3}

<u>Step 6: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em>:                                                                               y''(-1) = \frac{8}{(-1+2)^3}
  2. [Algebra] Evaluate:                                                                                       y''(-1) =8
6 0
3 years ago
Read 2 more answers
. A survey of 30 students is taken. 11 students say that mathematics is their favorite subject. Based on this survey, how many s
Sveta_85 [38]
Ok, so based on a survey - you know that out of 30 students, 11 said that their favourite subject is mathematics. :-)

This means that:

11/30 of these students think mathematics if their favourite subject.

Now, in order to answer your question, we are going to have to change the denominator of the fraction above to 1000. Whatever we do to the denominator of this fraction, we must do to the numerator of this fraction.

Example:

\frac { 11 }{ 30 } \times \frac { \frac { 1000 }{ 30 }  }{ \frac { 1000 }{ 30 }  } \\ \\ =\frac { \frac { 11000 }{ 30 }  }{ 1000 } \\ \\ =\frac { 366.\dot { 6 }  }{ 1000 }

This means that rounded to the nearest ten, theoretically speaking, 370 students out of 1000 would say that mathematics is their favourite subject.
7 0
3 years ago
Read 2 more answers
Other questions:
  • A disc has a diameter of 21 cm while a mini disc has a diameter of 14cm. Write the ratio of the mini disc diameter to the disc d
    6·1 answer
  • Simplify square root of (1-cos)(1+cos)/cos^2
    10·1 answer
  • The geometric sequence a i a i ​ a, start subscript, i, end subscript is defined by the formula: a 1 = 8 a 1 ​ =8a, start subscr
    11·1 answer
  • 3. 3(a + 1) - 5 = 3a - 2<br>a=​
    7·2 answers
  • What is the direction of air resistance when an object is falling
    9·1 answer
  • How do polynomial identities apply to complex numbers?
    13·1 answer
  • The expression sin57 is equal to
    12·1 answer
  • Solve equation by using the quadratic formula.
    8·1 answer
  • If i had 33 watermelons in one hand and 21 apples in another <br> what do i have?
    8·2 answers
  • 49.81 dag converted to hg and the rounded to the nearest tenth
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!