Answer:
She is going at 30.4 m/s at the top of the 35-meter hill.
Explanation:
We can find the velocity of the skier by energy conservation:

On the top of the hill 1 (h₁), she has only potential energy since she starts from rest. Now, on the top of the hill 2 (h₂), she has potential energy and kinetic energy.
(1)
Where:
m: is the mass of the skier
h₁: is the height 1 = 82 m
h₂: is the height 2 = 35 m
g: is the acceleration due to gravity = 9.81 m/s²
v₂: is the speed of the skier at the top of h₂ =?
Now, by solving equation (1) for v₂ we have:
Therefore, she is going at 30.4 m/s at the top of the 35-meter hill.
I hope it helps you!
The correct answer to this question is C - Gravity is a force. Gravity
is also an example of a universal law. Well, according to Isaac Newton,
anyway. According to Newton's Law of Universal Gravitation, 'every point
mass attracts every single point mass by a force pointing along the
line intersecting both paths.'
<span />
Explanation:
The simplest kinetic model is based on the assumptions that: (1) the gas is composed of a large number of identical molecules moving in random directions, separated by distances that are large compared with their size; (2) the molecules undergo perfectly elastic collisions (no energy loss) with each other and with the ...
Answer:
The amount of force and the angle between them.
Explanation: