You didn't mention it, but the trumpeter herself has to be standing still.
<span>Person C, the one running towards the trumpeter, hears a pitch
that is higher than B-flat. (A)
Person B, the one running away from the trumpeter, hears a pitch
that is lower than B-flat.
Person D, the one standing still the whole time, hears the B-flat.</span>
Answer:
a)
Y0 = 0 m
Vy0 = 15 m/s
ay = -9.81 m/s^2
b) 7.71 m
c) 3.06 s
Explanation:
The knowns are that the initial vertical speed (at t = 0 s) is 15 m/s upwards. Also at that time the dolphin is coming out of the water, so its initial position is 0 m. And since we can safely assume this happens in Earth, the acceleration is the acceleration of gravity, which is 9.81 m/s^2 pointing downwards
Y(0) = 0 m
Vy(0) = 15 m/s
ay = -9.81 m/s^2 (negative because it points down)
Since acceleration is constant we can use the equation for uniformly accelerated movement:
Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2
To find the highest point we do the first time derivative (this is the speed:
V(t) = Vy0 + a * t
We equate this to zero
0 = Vy0 + a * t
0 = 15 - 9.81 * t
15 = 9.81 * t
t = 0.654 s
At this time it will have a height of:
Y(0.654) = 0 + 15 * 0.654 - 1/2 * 9.81 * 0.654^2 = 7.71 m
The doplhin jumps and falls back into the water, when it falls again it position will be 0 again. So we can equate the position to zero to find how long it was in the air knowing that it started the jump at t = 0s.
0 = Y0 + Vy0 * t + 1/2 * a * t^2
0 = 0 + 15 * t - 1/2 * 9.81 t^2
0 = 15 * t - 4.9 * t^2
0 = t * (15 - 4.9 * t)
t1 = 0 This is the moment it jumped into the air
0 = 15 - 4.9 * t2
15 = 4.9 * t2
t2 = 3.06 s This is the moment when it falls again.
3.06 - 0 = 3.06 s
On a similar problem wherein instead of 480 g, a 650 gram of bar is used:
Angular momentum L = Iω, where
<span>I = the moment of inertia about the axis of rotation, which for a long thin uniform rod rotating about its center as depicted in the diagram would be 1/12mℓ², where m is the mass of the rod and ℓ is its length. The mass of this particular rod is not given but the length of 2 meters is. The moment of inertia is therefore </span>
<span>I = 1/12m*2² = 1/3m kg*m² </span>
<span>The angular momentum ω = 2πf, where f is the frequency of rotation. If the angular momentum is to be in SI units, this frequency must be in revolutions per second. 120 rpm is 2 rev/s, so </span>
<span>ω = 2π * 2 rev/s = 4π s^(-1) </span>
<span>The angular momentum would therefore be </span>
<span>L = Iω </span>
<span>= 1/3m * 4π </span>
<span>= 4/3πm kg*m²/s, where m is the rod's mass in kg. </span>
<span>The direction of the angular momentum vector - pseudovector, actually - would be straight out of the diagram toward the viewer. </span>
<span>Edit: 650 g = 0.650 kg, so </span>
<span>L = 4/3π(0.650) kg*m²/s </span>
<span>≈ 2.72 kg*m²/s</span>
Water has a high specific heat capacity. Oil has a smaller heat capacity.