1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sindrei [870]
3 years ago
9

Why is the gravitational potential energy of an object 1 meter above the moons surface less than its potential energy 1meter abo

ve earths surface?
a. the objects mass is less on the moon
b. the objects weight is more on the moon
c. the objects acceleration due to gravity is less on the moon
d. both a and c
Physics
1 answer:
sleet_krkn [62]3 years ago
3 0

Answer:

c

Explanation:

took test

You might be interested in
How much heat is absorbed by 60 g of copper when it is heated from 20°C to 80°C?
ira [324]

Answer:

1,836J

Explanation:

6 0
3 years ago
John flies directly east for 20km, then turns to the north and flies for another 10 km before dodging a flock of geese. what’s t
KIM [24]
The distance is 30 km and the displacement is 22.4 km North East
7 0
3 years ago
A car initially traveling 7 m/s speeds up uniformly at a rate of 3 m/s2 until it reaches a velocity of 22 m/s. How much time did
dezoksy [38]

Answer:

t = 5 s

Explanation:

Data:

  • Initial Velocity (Vo) = 7 m/s
  • Acceleration (a) = 3 m/s²
  • Final Velocity (Vf) = 22 m/s
  • Time (t) = ?

Use formula:

  • \boxed{t=\frac{Vf - Vo}{a}}

Replace:

  • \boxed{t=\frac{22\frac{m}{s} -7\frac{m}{s}}{3\frac{m}{s^{2}}}}

Solve the subtraction of the numerator:

  • \boxed{t=\frac{15\frac{m}{s}}{3\frac{m}{s^{2}}}}

It divides:

  • \boxed{t=5\ s}

How much time did it take the car to reach this final velocity?

It took a time of <u>5 seconds.</u>

8 0
3 years ago
Assume the motions and currents mentioned are along the x axis and fields are in the y direction. (a) does an electric field exe
matrenka [14]
<span> (a) does an electric field exert a force on a stationary charged object? 
Yes. The force exerted by an electric field of intensity E on an object with charge q is
</span>F=qE
<span>As we can see, it doesn't depend on the speed of the object, so this force acts also when the object is stationary.

</span><span>(b) does a magnetic field do so?
No. In fact, the magnetic force exerted by a magnetic field of intensity B on an object with  charge q and speed v is
</span>F=qvB \sin \theta
where \theta is the angle between the direction of v and B.
As we can see, the value of the force F depends on the value of the speed v: if the object is stationary, then v=0, and so the force is zero as well.

<span>(c) does an electric field exert a force on a moving charged object? 
Yes, The intensity of the electric force is still
</span>F=qE
<span>as stated in point (a), and since it does not depend on the speed of the charge, the electric force is still present.

</span><span>(d) does a magnetic field do so?
</span>Yes. As we said in point b, the magnetic force is
F=qvB \sin \theta
And now the object is moving with a certain speed v, so the magnetic force F this time is different from zero.

<span>(e) does an electric field exert a force on a straight current-carrying wire?
Yes. A current in a wire consists of many charges traveling through the wire, and since the electric field always exerts a force on a charge, then the electric field exerts a force on the charges traveling through the wire.

</span><span>(f) does a magnetic field do so? 
Yes. The current in the wire consists of charges that are moving with a certain speed v, and we said that a magnetic field always exerts a force on a moving charge, so the magnetic field is exerting a magnetic force on the charges that are traveling through the wire.

</span><span>(g) does an electric field exert a force on a beam of moving electrons?
Yes. Electrons have an electric charge, and we said that the force exerted by an electric field is
</span>F=qE
<span>So, an electric field always exerts a force on an electric charge, therefore on an electron beam as well.

</span><span>(h) does a magnetic field do so?
Yes, because the electrons in the beam are moving with a certain speed v, so the magnetic force
</span>F=qvB \sin \theta
<span>is different from zero because v is different from zero.</span>
6 0
3 years ago
a projectile is shot horizontally from the edge of a cliff, 230m above the ground. the projectile lands 300m from base of the cl
bekas [8.4K]

Answer:

The time taken by the projectile to hit the ground is 6.85 sec.

Explanation:

Given that,

Vertical height of cliff = 230 m

Distance = 300 m

Suppose, determine the time taken by the projectile to hit the ground.

We need to calculate the time

Using second equation of motion

s=ut+\dfrac{1}{2}gt^2

Where, s = vertical height of cliff

u = initial vertical velocity

g = acceleration due to gravity

Put the value in the equation

230=0+\dfrac{1}{2}\times9.8\times t^2

t=\sqrt{\dfrac{230\times2}{9.8}}

t=6.85 sec

Hence, The time taken by the projectile to hit the ground is 6.85 sec.

7 0
3 years ago
Other questions:
  • Assume that when you stretch your torso vertically as much as you can, your center of mass is 1.0 m above the floor. The maximum
    8·1 answer
  • A point charge is placed at the center of a spherical Gaussian surface. Is changed (a) if the surface is replaced by a cube of t
    5·1 answer
  • Which of the following air conditions would be LEAST likely to have precipitation 10 pts
    12·1 answer
  • A 900 kg car is traveling at 20 m/s along the road. What force must be applied to the car to stop it in a distance of 30 m2 Assu
    12·1 answer
  • A rock falls off a cliff. How fast is the rock traveling vertically two seconds later?
    5·1 answer
  • Which is NOT involved in photosynthesis
    8·1 answer
  • Two identical conducting spheres are placed with their centers 0.30 m apart. One is given a charge of 12 X10^-9 C and the other
    7·1 answer
  • As a passenger balloon rises, its gas bag tends to A. Become smaller B. Leak C. Distort D. Expand E. Remain unchanged
    12·2 answers
  • What is meant by specific latent heat of fussion​
    10·1 answer
  • We've been learning new ways to use our ears. How do the ears and voice work together?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!