Aerobie. Frisbee. Discus. Javelin. I suppose an American football to some extent.
<span>Pull! Clay pigeons. Arrows. Wingsuit. Kites. Hang gliders. Sails. sailboat keels/dagger boards. Water skis. Ski jumping skis. Boomerang. </span>
<span>I'm excluding spheres and parachutes as bluff bodies even though aerodynamics often plays a big part in their motion.</span>
Answer:
I think the answer is a
Explanation:
for it to be accurate has be to exactly 0.9 rad
it is not precise because the answer she is getting is different everytime and not even close. For instance,
It would have been precise if she had gotten 0.37 rad in every attempt. or 0.89 every attempt...
Answer: Part(a)=0.041 secs, Part(b)=0.041 secs
Explanation: Firstly we assume that only the gravitational acceleration is acting on the basket ball player i.e. there is no air friction
now we know that
a=-9.81 m/s^2 ( negative because it is pulling the player downwards)
we also know that
s=76 cm= 0.76 m ( maximum s)
using kinetic equation

where v is final velocity which is zero at max height and u is it initial
hence


now we can find time in the 15 cm ascent


using quadratic formula

t=0.0409 sec
the answer for the part b will be the same
To find the answer for the part b we can find the velocity at 15 cm height similarly using

where s=0.76-0.15
as the player has traveled the above distance to reach 15cm to the bottom


when the player reaches the bottom it has the same velocity with which it started which is 3.861
hence the time required to reach the bottom 15cm is

t=0.0409
Answer:

Explanation:
Given:
- mass of the object on a horizontal surface,

- coefficient of static friction,

- coefficient of kinetic friction,

- horizontal force on the object,

<u>Now the value of limiting frictional force offered by the contact surface tending to have a relative motion under the effect of force:</u>

where:
normal force of reaction acting on the body= weight of the body


As we know that the frictional force acting on the body is always in the opposite direction:
So, the frictional force will not be at its maximum and will be equal in magnitude to the applied external force and hence the body will not move.
so, the frictional force will be:
