1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fiesta28 [93]
3 years ago
5

Question 6(Multiple Choice Worth 4 points)

Mathematics
2 answers:
Artist 52 [7]3 years ago
4 0

It would be 13 spaces lower because f(x) always equals y and -13 means you are going down 13 units.

Plz mark me brainliest

lesya692 [45]3 years ago
3 0

Answer:

C, the plus or minus at the end of a function stands for the point on the y axis going up or down 13.

Step-by-step explanation:

Brainlyest pls I need 1 more to level up

You might be interested in
Find angle B if triangle ABC below is isosceles.
crimeas [40]

2x-20 = x+8

x-20 =8

x = 28

28+8 =36

 angle B = 36 degrees

answer is b

5 0
3 years ago
Reduce in standard form -3/-15​
andriy [413]

Answer:

1/5? 0.2?

Step-by-step explanation:

5 0
3 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
What is the difference between correlation and dependencies?
zheka24 [161]

Dependency: A variable whose value depends on the value assigned to another variable (independent variable).

Correlation: The relationship between two or more variables is considered as correlation. 

 In statistics, when we talk about dependency, we are referring to any statistical relationship between two random variables or two sets of data. Correlation, on the other hand refers to any of a broad class of statistical relationships involving dependence. 

3 0
3 years ago
Simplify 2[(9 - 5)^5 / 8]
Alenkinab [10]
2[(9 - 5)^5/8] = 2[4^5/8] = 2[1024/8] = 2[128] = 256
5 0
3 years ago
Other questions:
  • Please help me out with this.....
    15·2 answers
  • I need help with finding the sum of (x^4 + 2x^3 - 7x - 9) + (x^5 - 2x^4 + 8x + 18) in standerd form
    13·1 answer
  • For the function f ( x ) = − 2 x + 3 , evaluate and simplify the difference quotient.
    11·1 answer
  • Susan drove 571 miles and the trip took 14 hours of driving time she wants to shorten her driving time by 1/2 hour what average
    15·1 answer
  • X-21=6 what does x equal??
    5·2 answers
  • Henry bought 246 pieces of candy to share evenly with his 6 guests. How many pieces of candy will each guest recieve?
    6·2 answers
  • Plzzz help mee
    15·1 answer
  • Find the value of x. 1) m angle2=3x-6 120° 2 B) 10 D) 6 A) 12 C) -11​
    6·1 answer
  • Determine the area of the shaded region to the<br> nearest integer.
    6·1 answer
  • A toy rocket lifts off at an initial velocity of 102 feet per second from a height of 10 feet. The height of the rocket can be m
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!