Answer: 5n = 3d and 3n + 6 = 2d + 4
Given that the numerator and denominator of a fraction are in the ratio of 3 to 5. When the numerator and denominator are both increased by 2, the fraction is equal to \dfrac{2}{3}.
We are to select the system of equations that could be used to solve the problem.
Since n denotes the numerator and m denotes the denominator of the given fraction, so we have:
n/d = 3/5
5n = 3d
<h3>and</h3>
(n+2)/(d+2) = 2/3
3(n+2) = 2(d+2)
3n + 6 = 2d + 4
Thus, the required system of equations is,
5n = 3d and 3n + 6 = 2d + 4
Brainliest pweaseee if the answer is clear and correct! <3 ~~~
Ignore what is scribbled out but I hope this helps!
Answer:
1/2 - Half of the numbers are odd
2 | <u>5</u><u>5</u><u>0</u><u>,</u><u>7</u><u>5</u><u>0</u><u>,</u><u>9</u><u>0</u><u>0</u>
2 | <u>2</u><u>7</u><u>5</u><u>,</u><u>3</u><u>7</u><u>5</u><u>,</u><u>4</u><u>5</u><u>0</u>
3 |<u> </u><u>2</u><u>7</u><u>5</u><u>,</u><u>3</u><u>7</u><u>5</u><u>,</u><u>2</u><u>2</u><u>5</u>
<u>3</u><u> </u>| <u>2</u><u>7</u><u>5</u><u>,</u><u>1</u><u>2</u><u>5</u><u>,</u><u>7</u><u>5</u>
5 | <u>2</u><u>7</u><u>5</u><u>,</u><u>1</u><u>2</u><u>5</u><u>,</u><u>2</u><u>5</u>
5 | <u>55,25,5</u>
5 | <u>1</u><u>1</u><u>,</u><u>5</u><u>,</u><u>5</u>
11 | <u>1</u><u>1</u><u>,</u><u>1</u><u>,</u><u>1</u>
LCM:-2×2×3×3×5×5×5×11=49500
Answer:
The answer to this problem is 89.