Answer:
Explanation:
The switch from glutamic acid to valine in position 6 of hemoglobin (HB) forms the basis of sickle cell anemia disease pathology.
Valine is hydrophobic and it's chain is shorter than glutamic acid. The lack of the carboxylic acid and shortness of valine will result in loss of the ionic interactions formed between the glutamic acid's carboxylic group and other amino acids. A hydrophobic cavity will form in the beta sheet of HB due to the short and hydrophobic structure of valine. For these reasons, the HB molecule will be less stable and insoluble in water. The insolubility is thought to be caused by fibril formation between the valine interacting with hydrophobic pocket residues of the adjacent HB molecule. This would in turn affect binding of oxygen to HB.
The blob operon produces enzymes that convert compound A into compound B. The operon is controlled by regulatory gene S. Normally, the enzymes encoded by the operon are synthesized only in the absence of compound B. If gene S is mutated, the enzymes are synthesized in the both the presence AND absence of compound B. Gene S must encode a(n):
a. inducer.
They lack colors such as blue and red. any primary color.
Human muscle cells also use fermentation. This occurs when muscle cells cannot get oxygen fast enough to meet their energy needs through aerobic respiration. There are two types of fermentation: lactic acid fermentation and alcoholic fermentation. Both types of fermentation are described below.