Answer:
12.3 mph
Step-by-step explanation:
17.9 - 5.6 = 12.3
Answer:
(3a - 4 )^2
Step-by-step explanation:
(9a^2-24a+16)=(3a - 4 )^2
Therefore the length of each side of the square is (3a - 4 )^2
Answer:

General Formulas and Concepts:
<u>Algebra I</u>
- Exponential Rule [Rewrite]:

<u>Calculus</u>
Limits
- Right-Side Limit:

Limit Rule [Variable Direct Substitution]: 
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integrals
Integration Constant C
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]: 
U-Substitution
U-Solve
Improper Integrals
Exponential Integral Function: 
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate Pt. 1</u>
- [Integral] Rewrite [Exponential Rule - Rewrite]:

- [Integral] Rewrite [Improper Integral]:

<u>Step 3: Integrate Pt. 2</u>
<em>Identify variables for u-substitution.</em>
- Set:

- Differentiate [Basic Power Rule]:

- [Derivative] Rewrite:

<em>Rewrite u-substitution to format u-solve.</em>
- Rewrite <em>du</em>:

<u>Step 4: Integrate Pt. 3</u>
- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] Substitute in variables:

- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] Substitute [Exponential Integral Function]:
![\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7B%5Cfrac%7B1%7D%7Bxe%5E%7Bx%5E2%7D%7D%20%5C%2C%20dx%20%3D%20%5Clim_%7Ba%20%5Cto%200%5E%2B%7D%20%5Cfrac%7B1%7D%7B2%7D%5BEi%28u%29%5D%20%5Cbigg%7C%20%5Climits%5E1_a)
- Back-Substitute:
![\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7B%5Cfrac%7B1%7D%7Bxe%5E%7Bx%5E2%7D%7D%20%5C%2C%20dx%20%3D%20%5Clim_%7Ba%20%5Cto%200%5E%2B%7D%20%5Cfrac%7B1%7D%7B2%7D%5BEi%28-x%5E2%29%5D%20%5Cbigg%7C%20%5Climits%5E1_a)
- Evaluate [Integration Rule - FTC 1]:
![\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7B%5Cfrac%7B1%7D%7Bxe%5E%7Bx%5E2%7D%7D%20%5C%2C%20dx%20%3D%20%5Clim_%7Ba%20%5Cto%200%5E%2B%7D%20%5Cfrac%7B1%7D%7B2%7D%5BEi%28-1%29%20-%20Ei%28a%29%5D)
- Simplify:

- Evaluate limit [Limit Rule - Variable Direct Substitution]:

∴
diverges.
Topic: Multivariable Calculus
Answer:
Step-by-step A bureaucrat who had no hope of advancing professionally still followed every rule, even when it slowed down his work and personal growth. According to the strain theory, what type of deviance does his behavior illustrate?