1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlada-n [284]
3 years ago
7

Height in meters 15 30 45 60 75 90 105

Mathematics
1 answer:
Alex787 [66]3 years ago
4 0

Step-by-step explanation:

....................

You might be interested in
Determine the discount between the point(-4,2) and the line 4y=3×+6​
frozen [14]

Answer:

d = 14/5

Step-by-step explanation:

The point (-4,2) means that;

At x = -4, y = 2

Now general form of a linear equation is;

Ax + By + C = 0

We are given;

4y = 3x + 6​

Rearranging to the form of a linear equation gives;

3x - 4y + 6 = 0

Thus, A = 3, B = -4 and C = 6

Thus, at point (-4,2), distance between them is;

d = (3(-4) - 4(2) + 6)/√(3² + (-4)²)

d = -14/5

We will take the absolute value.

Thus; d = 14/5

6 0
3 years ago
Please answer correctly !!!!!!!!!! Will mark Brianliest !!!!!!!!!!!!
olya-2409 [2.1K]

Answer:

-10

Step-by-step explanation:

-(x-5) ^2+25

-x+5^2+25

-5 -5

-x^2+20

-2x+20

---- ----

-2 -2

x=-10

// have a great day //

3 0
3 years ago
The Wall Street Journal Corporate Perceptions Study 2011 surveyed readers and asked how each rated the Quality of Management and
natali 33 [55]

Answer:

a)\chi^2 = \frac{(40-35)^2}{35}+\frac{(35-40)^2}{40}+\frac{(25-25)^2}{25}+\frac{(25-24.5)^2}{24.5}+\frac{(35-28)^2}{28}+\frac{(25-17.5)^2}{17.5}+\frac{(5-10.5)^2}{10.5}+\frac{(10-12)^2}{12}+\frac{(15-7.5)^2}{7.5} =17.03

p_v = P(\chi^2_{4} >17.03)=0.0019

And we can find the p value using the following excel code:

"=1-CHISQ.DIST(17.03,4,TRUE)"

Since the p value is lower than the significance level we can reject the null hypothesis at 5% of significance, and we can conclude that we have association or dependence between the two variables.

b)

P(E|Ex)= P(EΛEx )/ P(Ex) = (40/215)/ (70/215)= 40/70=0.5714

P(E|Gx)= P(EΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(E|Fx)= P(EΛFx )/ P(Fx) = (25/215)/ (50/215)= 25/50=0.5

P(G|Ex)= P(GΛEx )/ P(Ex) = (25/215)/ (70/215)= 25/70=0.357

P(G|Gx)= P(GΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(G|Fx)= P(GΛFx )/ P(Fx) = (10/215)/ (50/215)= 10/50=0.2

P(F|Ex)= P(FΛEx )/ P(Ex) = (5/215)/ (70/215)= 5/70=0.0714

P(F|Gx)= P(FΛGx )/ P(Gx) = (10/215)/ (80/215)= 10/80=0.125

P(F|Fx)= P(FΛFx )/ P(Fx) = (15/215)/ (50/215)= 15/50=0.3

And that's what we see here almost all the conditional probabilities are higher than 0.2 so then the conclusion of dependence between the two variables makes sense.

Step-by-step explanation:

A chi-square goodness of fit test "determines if a sample data matches a population".

A chi-square test for independence "compares two variables in a contingency table to see if they are related. In a more general sense, it tests to see whether distributions of categorical variables differ from each another".

Assume the following dataset:

Quality management        Excellent      Good     Fair    Total

Excellent                                40                35         25       100

Good                                      25                35         10         70

Fair                                         5                   10          15        30

Total                                       70                 80         50       200

Part a

We need to conduct a chi square test in order to check the following hypothesis:

H0: There is independence between the two categorical variables

H1: There is association between the two categorical variables

The level of significance assumed for this case is \alpha=0.05

The statistic to check the hypothesis is given by:

\chi^2 = \sum_{i=1}^n \frac{(O_i -E_i)^2}{E_i}

The table given represent the observed values, we just need to calculate the expected values with the following formula E_i = \frac{total col * total row}{grand total}

And the calculations are given by:

E_{1} =\frac{70*100}{200}=35

E_{2} =\frac{80*100}{200}=40

E_{3} =\frac{50*100}{200}=25

E_{4} =\frac{70*70}{200}=24.5

E_{5} =\frac{80*70}{200}=28

E_{6} =\frac{50*70}{200}=17.5

E_{7} =\frac{70*30}{200}=10.5

E_{8} =\frac{80*30}{200}=12

E_{9} =\frac{50*30}{200}=7.5

And the expected values are given by:

Quality management        Excellent      Good     Fair       Total

Excellent                                35              40          25         100

Good                                      24.5           28          17.5        85

Fair                                         10.5            12           7.5         30

Total                                       70                 80         65        215

And now we can calculate the statistic:

\chi^2 = \frac{(40-35)^2}{35}+\frac{(35-40)^2}{40}+\frac{(25-25)^2}{25}+\frac{(25-24.5)^2}{24.5}+\frac{(35-28)^2}{28}+\frac{(25-17.5)^2}{17.5}+\frac{(5-10.5)^2}{10.5}+\frac{(10-12)^2}{12}+\frac{(15-7.5)^2}{7.5} =17.03

Now we can calculate the degrees of freedom for the statistic given by:

df=(rows-1)(cols-1)=(3-1)(3-1)=4

And we can calculate the p value given by:

p_v = P(\chi^2_{4} >17.03)=0.0019

And we can find the p value using the following excel code:

"=1-CHISQ.DIST(17.03,4,TRUE)"

Since the p value is lower than the significance level we can reject the null hypothesis at 5% of significance, and we can conclude that we have association or dependence between the two variables.

Part b

We can find the probabilities that Quality of Management and the Reputation of the Company would be the same like this:

Let's define some notation first.

E= Quality Management excellent     Ex=Reputation of company excellent

G= Quality Management good     Gx=Reputation of company good

F= Quality Management fait     Ex=Reputation of company fair

P(EΛ Ex) =40/215=0.186

P(GΛ Gx) =35/215=0.163

P(FΛ Fx) =15/215=0.0697

If we have dependence then the conditional probabilities would be higher values.

P(E|Ex)= P(EΛEx )/ P(Ex) = (40/215)/ (70/215)= 40/70=0.5714

P(E|Gx)= P(EΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(E|Fx)= P(EΛFx )/ P(Fx) = (25/215)/ (50/215)= 25/50=0.5

P(G|Ex)= P(GΛEx )/ P(Ex) = (25/215)/ (70/215)= 25/70=0.357

P(G|Gx)= P(GΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(G|Fx)= P(GΛFx )/ P(Fx) = (10/215)/ (50/215)= 10/50=0.2

P(F|Ex)= P(FΛEx )/ P(Ex) = (5/215)/ (70/215)= 5/70=0.0714

P(F|Gx)= P(FΛGx )/ P(Gx) = (10/215)/ (80/215)= 10/80=0.125

P(F|Fx)= P(FΛFx )/ P(Fx) = (15/215)/ (50/215)= 15/50=0.3

And that's what we see here almost all the conditional probabilities are higher than 0.2 so then the conclusion of dependence between the two variables makes sense.

7 0
3 years ago
An amusement park employee records the ages of the people who ride the new roller coaster during a fifteen-minute period.
cupoosta [38]
Got doesn’t sound right begins
4 0
3 years ago
Write the following proportion:<br> 8 is to 64 as 2 is to X
bagirrra123 [75]
The answer is x=16 thanks what i got to hope it helps 
3 0
3 years ago
Other questions:
  • Does any one want to talk I'm bored and in quarantine​
    10·2 answers
  • Consider a normal population distribution with the value of σ known. (a) what is the confidence level for the interval x ± 2.81σ
    10·1 answer
  • What is 2400 hours after 5pm
    13·2 answers
  • Write (-14/25)(45/49) in simplest form
    13·1 answer
  • Need this ASAP Please
    15·1 answer
  • Which expression is equivalent to the given expression?
    12·1 answer
  • What is the answer of 2+y=11​
    13·2 answers
  • A rectangular tank measuring 50 cm x 30 cm x 60 cm was completely filled with water. 1 5 of the water in the tank was transferre
    8·1 answer
  • A bike path is 5 3/4 miles long. the city makes it 3 1/2 times longer. what is the length of the completed bike path?
    15·1 answer
  • Janine works for a company that makes lawn chairs. She knows that they can maximize profits and make $7500 if they sell the chai
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!