a) ∠PQR=65° (alternate interior angles theorem)
∠PRQ = 60° (linear pair)
x = 55° (angles in a triangle add to 180°)
b) ∠APQ and ∠PQR are congruent alternate interior angles.
The circumference of a circle is given by: 2πr, where r is the radius of the circle. Equating 4π, we have 2πr = 4π so the radius of the circle is: r = 4/2 = 2. Then, the area of the circle is given by πr ^ 2 = π * (2 ^ 2) = 4π.Since the square and the circle have the same area, then: Let L be the side of the square, we have: L ^ 2 = 4π, clearing L = 2 * (π ^ (1/2))The perimeter of a square is the sum of its sides: P = L + L + L + L = 2 * (π ^ (1/2)) + 2 * (π ^ (1/2)) + 2 * (π ^ (1/2)) + 2 * (π) ^ (1/2)) P = 8 * (π ^ (1/2))
Si it is a linear eqaution
24th is the answer, you just double the 12 because it’s both a number 3 and 4 go into
Answer:
1/14
Step-by-step explanation:
P(red, then black) =
·
=
=
(simplifed form)