Answer:
a) 3.6
b) 1.897
c)0.0273
d) 0.9727
Step-by-step explanation:
Rabies has a rare occurrence and we can assume that events are independent. So, X the count of rabies cases reported in a given week is a Poisson random variable with μ=3.6.
a)
The mean of a Poisson random variable X is μ.
mean=E(X)=μ=3.6.
b)
The standard deviation of a Poisson random variable X is √μ.
standard deviation=S.D(X)=√μ=√3.6=1.897.
c)
The probability for Poisson random variable X can be calculated as
P(X=x)=(e^-μ)(μ^x)/x!
where x=0,1,2,3,...
So,
P(no case of rabies)=P(X=0)=e^-3.6(3.6^0)/0!
P(no case of rabies)=P(X=0)=0.0273.
d)
P(at least one case of rabies)=P(X≥1)=1-P(X<1)=1-P(X=0)
P(at least one case of rabies)=1-0.0273=0.9727
Answer:

Step-by-step explanation:
2y - 3x = ay - 2x
(2y - 3x) + (3x - ay) = (ay - 2x) + (3x - 2y)
2y - 3x + 3x - ay = ay - 2x + 3x - ay
2y - ay = ay - ay -2x + 3x
2y - ay = x
y(-a + 2) = x


Hope this helps! :D
Can I have brainliest? :)
If 1/6 of the bags of pet food are cat food, then the other 5/6 is other pet food.
Since there are 4 bags that make up 1/6 of the food, multiplying 4 by 6 should get the answer. 4 x 6 = 24
<em>Good luck, you'll need it :)</em>
To elaborate:
To do this problem, we assume that Mr. Sanchez is driving at a constant rate.
According to this information, he has driven 120 mi in 3 hr. To find how much he drives in 5 hr, we first have to find how many mi he drives in 1 hour. To do this, we divide 120 miles by 3 hours, since we assume that he managed to drive an equal amount in each hour.
120/3=40
Therefore Mr. Sanchez drove at a rate of 40 mph.
However, this isn't the final answer. 40 miles is the distance for one hour of driving. To find the distance for 5 hours, we have to multiply the distance by 5 as well.
40 times 5=200
In conclusion, Mr. Sanchez will drive 200 miles in 5 hours.