1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ale4655 [162]
3 years ago
9

Verizon has a new cell phone plan where you pay $40

Mathematics
1 answer:
iVinArrow [24]3 years ago
6 0

Answer: 4 gigabytes

Step-by-step explanation:

88 - 40 = 48

48/12 = 4

You might be interested in
Solve using order of operation <br>-3x2 + (-10)÷(-2)=​
timama [110]

Answer:

-1

Step-by-step explanation:

10/2=5+ -3*2=-1

7 0
3 years ago
What is 47/3 radians in degrees?
xeze [42]
47/ 3 rad= 2820

have a great day
6 0
3 years ago
PLEASE HELP!! EARN 50 POINTS!! WILL MARK BRAINLIEST!!!!
STALIN [3.7K]

Answer:

Use demos it is reaaly helpful with this



3 0
4 years ago
PLEASE HELP ME I WILL GIVE 20 POINTS PLEASEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE I forgot how to do this stuff
VikaD [51]

Answer:

80

Step-by-step explanation:

Angles on a straight line sum to 180

65+35=100

180-100=80

angle r=80

6 0
3 years ago
Read 2 more answers
The Empirical Rule The following data represent the length of eruption for a random sample of eruptions at the Old Faithful geys
ad-work [718]

Answer:

(a) Sample Standard Deviation approximately to the nearest whole number = 6

(b) The use of Empirical Rule to make any general statements about the length of eruptions is empirical rules tell us about how normal a distribution and gives us an idea of what the final outcome about the length of eruptions is.

(c) The percentage of eruptions that last between 92 and 116 seconds using the empirical rule is 95%

(d) The actual percentage of eruptions that last between 92 and 116 seconds, inclusive is 95.45%

(e) The percentage of eruptions that last less than 98 seconds using the empirical rule is 16%

(f) The actual percentage of eruptions that last less than 98 seconds is 15.866%

Step-by-step explanation:

(a) Determine the sample standard deviation length of eruption.

Express your answer rounded to the nearest whole number.

Step 1

We find the Mean.

Mean = Sum of Terms/Number of Terms

= 90+ 90+ 92+94+ 95+99+99+100+100, 101+ 101+ 101+101+ 102+102+ 102+103+103+ 103+103+103+ 104+ 104+104+105+105+105+ 106+106+107+108+108+108 + 109+ 109+ 110+ 110+110+110+ 110+ 111+ 113+ 116+120/44

= 4582/44

= 104.1363636

Step 2

Sample Standard deviation = √(x - Mean)²/n - 1

=√( 90 - 104.1363636)²+ (90-104.1363636)² + (92 -104.1363636)² ..........)/44 - 1

= √(199.836777 + 199.836777 + 147.2913224+ 102.7458678+ 83.47314049+ 26.3822314+ 26.3822314+ 17.10950413+17.10950413+ 9.836776857+ 9.836776857, 9.836776857+9.836776857+ 4.564049585+ 4.564049585+ 4.564049585+ 1.291322313+ 1.291322313+ 1.291322313+ 1.291322313+ 1.291322313+ 0.01859504133+ 0.01859504133+ 0.01859504133+ 0.7458677685+ 0.7458677685+ 0.7458677685+ 3.473140497+ 3.473140497+ 8.200413225+ 14.92768595+ 14.92768595+ 14.92768595+ 23.65495868+ 23.65495868+ 34.38223141+ 34.38223141+34.38223141+ 34.38223141+ 34.38223141+47.10950414+ 78.56404959+ 140.7458677+ 251.6549586) /43

= √1679.181818/43

= √39.05073996

= 6.249059126

Approximately to the nearest whole number:

Mean = 104

Standard deviation = 6

(b) On the basis of the histogram drawn in Section 3.1, Problem 28, comment on the appropriateness of using the Empirical Rule to make any general statements about the length of eruptions.

The use of Empirical Rule to make any general statements about the length of eruptions is empirical rules tell us about how normal a distribution and gives us an idea of what the final outcome about the length of eruptions is .

(c) Use the Empirical Rule to determine the percentage of eruptions that last between 92 and 116 seconds.

The empirical rule formula states that:

1) 68% of data falls within 1 standard deviation from the mean - that means between μ - σ and μ + σ .

2) 95% of data falls within 2 standard deviations from the mean - between μ – 2σ and μ + 2σ .

3)99.7% of data falls within 3 standard deviations from the mean - between μ - 3σ and μ + 3σ

Mean = 104, Standard deviation = 6

For 68% μ - σ = 104 - 6 = 98, μ + σ = 104 + 6 = 110

For 95% μ – 2σ = 104 -2(6) = 104 - 12 = 92

μ + 2σ = 104 +2(6) = 104 + 12 = 116

Therefore, the percentage of eruptions that last between 92 and 116 seconds is 95%

(d) Determine the actual percentage of eruptions that last between 92 and 116 seconds, inclusive.

We solve for this using z score formula

The formula for calculating a z-score is is z = (x-μ)/σ

where x is the raw score, μ is the population mean, and σ is the population standard deviation.

Mean = 104, Standard deviation = 6

For x = 92

z = 92 - 104/6

= -2

Probability value from Z-Table:

P(x = 92) = P(z = -2) = 0.02275

For x = 116

z = 92 - 116/6

= 2

Probability value from Z-Table:

P(x = 116) = P(z = 2) = 0.97725

The actual percentage of eruptions that last between 92 and 116 seconds

= P(x = 116) - P(x = 92)

= 0.97725 - 0.02275

= 0.9545

Converting to percentage = 0.9545 × 100

= 95.45%

Therefore, the actual percentage of eruptions that last between 92 and 116 seconds, inclusive is 95.45%

(e) Use the Empirical Rule to determine the percentage of eruptions that last less than 98 seconds

The empirical rule formula:

1) 68% of data falls within 1 standard deviation from the mean - that means between μ - σ and μ + σ .

2) 95% of data falls within 2 standard deviations from the mean - between μ – 2σ and μ + 2σ .

3)99.7% of data falls within 3 standard deviations from the mean - between μ - 3σ and μ + 3σ

For 68% μ - σ = 104 - 6 = 98,

Therefore, 68% of eruptions that last for 98 seconds.

For less than 98 seconds which is the Left hand side of the distribution, it is calculated as

= 100 - 68/2

= 32/2

= 16%

Therefore, the percentage of eruptions that last less than 98 seconds is 16%

(f) Determine the actual percentage of eruptions that last less than 98 seconds.

The formula for calculating a z-score is z = (x-μ)/σ, where x is the raw score, μ is the population mean, and σ is the population standard deviation.

For x = 98

Z score = x - μ/σ

= 98 - 104/6

= -1

Probability value from Z-Table:

P(x ≤ 98) = P(x < 98) = 0.15866

Converting to percentage =

0.15866 × 100

= 15.866%

Therefore, the actual percentage of eruptions that last less than 98 seconds is 15.866%

4 0
3 years ago
Other questions:
  • If x-2 is a factor of x^2+3x+k, what is the value of k?
    6·1 answer
  • Find the decimal equivalent to 4/15
    11·1 answer
  • 1. Find the missing measure.
    11·1 answer
  • The value of y varies directly with x, and y = 63 when x = 14. Find y when x = 28. I have been stuck on this for a while...
    8·1 answer
  • What is 60% of 60 minutes?
    5·2 answers
  • PLEASE HELP ME ASAP!!!!!!
    10·1 answer
  • 2 birds are building a nest. Bird A is flying toward the nest at the same time bird B is flying away from it
    9·1 answer
  • Need answer for number 13.<br> Tysm
    12·2 answers
  • 7 7/10 + 6 2/3 help please
    13·1 answer
  • !!!!!! please help!!!!!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!