Answer:
A. True
B. False
Step-by-step explanation:
B is false because rational numbers have either repeating decimals or numbers that come to an end.
So I'm assuming that you're taking Calculus.
The first thing you want to do is take the integral of f(x)...
Use the power rule to get:
4X^2-13X+3.
Now solve for X when f(x)=0. This is because when the slope is 0, it is either a minimum or a maximum(I'm assuming you know this)
Now you get X=0.25 and X=3. Since we are working in the interval of (1,4), we can ignore 0.25
Thus our potential X values for max and min are X=1,X=4,X=3(You don't want to forget the ends of the bounds!)
Plugging these value in for f(x), we get
f(1)=2.833
f(3)=-8.5
f(4)=1.667
Thus X=1 is the max and X=3 is the min.
So max:(1,2.833)
min:(3,-8.5)
Hope this helps!
In solving equations, each must have vales of x and y. X is any number and Y is the output of any number. If you substitute x for a number, you can solve the equation for y.
Answer:
She did not consider the multiplicative inverse property of a real number
Step-by-step explanation:
Jacinta in her conclusion did not consider the Multiplicative Inverse property of real numbers.
Let x be an irrational number.
So, 
If x is an irrational number, then its reverse is also an irrational number. So by the Multiplicative Inverse property their product is 1 and 1 is a rational number. Thus, Jacinta was incorrect.
Answer:
Mean age: 48
Standard deviation: 4
Step-by-step explanation:
a) Mean
The formula for Mean = Sum of terms/ Number of terms
Number of terms
= 42 + 54 + 50 + 54 + 50 + 42 + 46 + 46 + 48+ 48/ 10
= 480/10
= 48
The mean age is 48
b) Standard deviation
The formula for Standard deviation =
√(x - Mean)²/n
Where n = number of terms
Standard deviation =
√[(42 - 48)² + (54 - 48)² + (50 - 48)² +(54 - 48)² + (50 - 48)² +(42 - 48)² + (46 - 48)² + (46 - 48)² + (48 - 48)² + (48 - 48)² / 10]
= √-6² + 6² + 2² + 6² + 2² + -6² + -2² + -2² + 0² + 0²/10
=√36 + 36 + 4 + 36 + 4 + 36 + 4 + 4 + 0 + 0/ 10
=√160/10
= √16
= 4
The standard deviation of the ages is 4