Answer:
a. 572Btu/s
b.0.1483Btu/s.R
Explanation:
a.Assume a steady state operation, KE and PE are both neglected and fluids properties are constant.
From table A-3E, the specific heat of water is
, and the steam properties as, A-4E:

Using the energy balance for the system:

Hence, the rate of heat transfer in the heat exchanger is 572Btu/s
b. Heat gained by the water is equal to the heat lost by the condensing steam.
-The rate of steam condensation is expressed as:

Entropy generation in the heat exchanger could be defined using the entropy balance on the system:

Hence,the rate of entropy generation in the heat exchanger. is 0.1483Btu/s.R
Answer:
an electrically charged atom or group of atoms formed by the loss or gain of one or more electrons, as a cation (positive ion), which is created by electron loss and is attracted to the cathode in electrolysis, or as an anion (negative ion), which is created by an electron gain and is attracted to the anode.
Answer:
Power develop at 6000 ft = 100 - 18 = 82 hp
Given:
Power produced by the engine at sea level = 100 hp
Explanation:
For each 1000 ft rise above the sea level, the power loss of the engine is about 3%
Therefore,
1000 ft - 3% loss
6000 ft - 
At 6000 ft, the power loss is 18% or 18 hp
Now,
Power develop at 6000 ft = Power at sea level - Power loss at 6000 ft
Power develop at 6000 ft = 100 - 18 = 82 hp
B is correct because most of the cells look the same so it's B
Jerome solves a problem using the law of conservation of momentum. What should Jerome always keep constant for each object after the objects collide and bounce apart?
a-velocity
b-mass
c-momentum
d-direction
Answer:
b. Mass
Explanation:
This question has to do with the principle of the law of conservation of momentum which states that the momentum of a system remains constant if no external force is acting on it.
As the question states, two objects collide with each other and eventually bounce apart, so their momentum may not be conserved but the mass of the objects is constant for each non-relativistic motion. Because of this, the mass of each object prior to the collision would be the same as the mass after the collision.
Therefore, the correct answer is B. Mass.