Answer:
Gold.
Explanation:
Because gold has a lower specific heat than aluminium.
Magnesium plus chlorine equals to magnesium chloride
Answer:
33.8 g Solution
Explanation:
A chemistry student needs 15.0 g of methanol for an experiment. The concentration of ethanol in the solution is 44.4% w/w, that is, there are 44.4 g of methanol every 100 g of solution. The mass of solution that would contain 15.0 g of methanol is:
15.0 g Methanol × 100 g Solution/44.4 g Methanol = 33.8 g Solution
Since 33.8 g are required and 320. g are available, there is enough solution for the requirements.
Below are the choices:
<span>The independent variable is the number of dry cells, and the dependent variable is the length of time the bulb works.
</span><span>The independent variable is the length of time the bulb works, and the dependent variable is the number of dry cells.
</span><span>The independent variable is the number of dry cells, and the dependent variable is the amount of energy available.
</span><span>The independent variable is the amount of energy available, and the dependent variable is the number of dry cells.
</span>
I think the answer is <span>The independent variable is the number of dry cells, and the dependent variable is the amount of energy available.</span>
Answer:
749 grams CO₂
Explanation:
To find the amount of carbon dioxide produced, you need to (1) convert grams C₃H₈ to moles C₃H₈ (via molar mass from periodic table), then (2) convert moles C₃H₈ to moles CO₂ (via mole-to-mole ratio via reaction coefficients), and then (3) convert moles CO₂ to grams CO₂ (via molar mass from periodic table). It is important to arrange the ratios/conversions in a way that allows for the cancellation of units. The desired unit should be in the numerator. The final answer should have 3 significant figures because the given value (250. grams) has 3 sig figs.
Molar Mass (C₃H₈): 3(12.01 g/mol) + 8(1.008 g/mol)
Molar Mass (C₃H₈): 44.094 g/mol
1 C₃H₈ + 5 O₂ ---> 3 CO₂ + 4 H₂O
Molar Mass (CO₂): 12.01 g/mol + 2(16.00 g/mol)
Molar Mass (CO₂): 44.01 g/mol
250. g C₃H₈ 1 mole C₃H₈ 3 moles CO₂ 44.01 g
------------------ x ---------------------- x ---------------------- x -------------------- =
44.094 g 1 mole C₃H₈ 1 mole CO₂
= 749 grams CO₂