Answer:
The final temperature of the given ideal diatomic gas: <u>T₂ = 753.6 K</u>
Explanation:
Given: Atmospheric pressure: P = 1.0 atm
Initial Volume: V₁ , Final Volume: V₂ = V₁ (1/10)
⇒ V₁ / V₂ = 10
Initial Temperature: T₁ = 300 K, Final temperature: T₂ = ? K
For a diatomic ideal gas: γ = 7/5
For an adiabatic process:


![\left [\frac{V_{1}}{V_{2}} \right ]^{\gamma-1 } = \frac{T_{2}}{T_{1}}](https://tex.z-dn.net/?f=%5Cleft%20%5B%5Cfrac%7BV_%7B1%7D%7D%7BV_%7B2%7D%7D%20%5Cright%20%5D%5E%7B%5Cgamma-1%20%7D%20%3D%20%5Cfrac%7BT_%7B2%7D%7D%7BT_%7B1%7D%7D)
![\left [10 \right ]^{\frac{7}{5}-1 } = \frac{T_{2}}{300 K}](https://tex.z-dn.net/?f=%5Cleft%20%5B10%20%5Cright%20%5D%5E%7B%5Cfrac%7B7%7D%7B5%7D-1%20%7D%20%3D%20%5Cfrac%7BT_%7B2%7D%7D%7B300%20K%7D)
![\left [10 \right ]^{\frac{2}{5} } = \frac{T_{2}}{300 K}](https://tex.z-dn.net/?f=%5Cleft%20%5B10%20%5Cright%20%5D%5E%7B%5Cfrac%7B2%7D%7B5%7D%20%7D%20%3D%20%5Cfrac%7BT_%7B2%7D%7D%7B300%20K%7D)


<em><u>Therefore, the final temperature of the given ideal diatomic gas</u></em><em>:</em> T₂ = 753.6 K