The amount of joules of heat that are lost when 150.0 g of steam are cooled from 124 °c to 86 °c is = -11343 joules
calculation
heat(Q) = mass(m) x specific heat capacity(C) x change in temperature (ΔT)
where,
Q=? joules
M=150.0 g
C for steam = 1.99 j/g/°c
ΔT= 86°c-124°c = -38°c
Q is therefore = 150.0 g x 1.99 j/g/°c x -38°c =-11343 joules
Answer:
C.11
Explanation:
Boron-11 makes up around 80% of all natural Boron. And, typically, the quickest way to determine the most abundant isotope of an element is to just round the atomic mass to the nearest whole number.
Answer: adding
Explanation:
Because it takes thermal energy to power it
Answer:
Q14: 17,140 g = 17.14 kg.
Q16: 504 J.
Explanation:
<u><em>Q14:</em></u>
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = 3600 x 10³ J).
m is the mass of the ice (m = ??? g).
c is the specific heat of the ice (c of ice = 2.1 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 100.0°C - 0.0°C = 100.0°C).
∵ Q = m.c.ΔT
∴ (3600 x 10³ J) = m.(2.1 J/g.°C).(100.0°C)
∴ m = (3600 x 10³ J)/(2.1 J/g.°C).(100.0°C) = 17,140 g = 17.14 kg.
<u><em>Q16:</em></u>
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = ??? J).
m is the mass of the ice (m = 12.0 g).
c is the specific heat of the ice (c of ice = 2.1 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 0.0°C - (-20.0°C) = 20.0°C).
∴ Q = m.c.ΔT = (12.0 g)(2.1 J/g.°C)(20.0°C) = 504 J.