Answer:

Explanation:
The torque applied by a force can be calculated as

where
F is the magnitude of the force
d is the length of the arm
is the angle between the direction of the force and the arm
In this problem, we have
F = 15 N
d = 2.0 m

Substituting into the equation, we find

Answer:
A
Explanation:
The roller coaster is stationary so the kinetic energy would be zero, but it is at the top of ramp so the potential energy would be high as its gravitational so it would have to be A
Answer:
Explanation:
Given,
initial angular speed, ω = 3,700 rev/min
=
final angular speed = 0 rad/s
Number of time it rotates= 46 times
angular displacement, θ = 2π x 46 = 92 π
Angular acceleration



Answer:
H = 1/2 g t^2 where t is time to fall a height H
H = 1/8 g T^2 where T is total time in air (2 t = T)
R = V T cos θ horizontal range
3/4 g T^2 = V T cos θ 6 H = R given in problem
cos θ = 3 g T / (4 V) (I)
Now t = V sin θ / g time for projectile to fall from max height
T = 2 V sin θ / g
T / V = 2 sin θ / g
cos θ = 3 g / 4 (T / V) from (I)
cos θ = 3 g / 4 * 2 sin V / g = 6 / 4 sin θ
tan θ = 2/3
θ = 33.7 deg
As a check- let V = 100 m/s
Vx = 100 cos 33.7 = 83,2
Vy = 100 sin 33,7 = 55.5
T = 2 * 55.5 / 9.8 = 11.3 sec
H = 1/2 * 9.8 * (11.3 / 2)^2 = 156
R = 83.2 * 11.3 = 932
R / H = 932 / 156 = 5.97 6 within rounding