1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Flauer [41]
3 years ago
12

A golfer collected data on the distance a golf cart traveled in a straight line and plotted it on a graph

Physics
1 answer:
devlian [24]3 years ago
5 0

Answer:

The cart moved away from the starting point between 8 s and 10 s.

Explanation:

Given that :

Which of these does NOT describe the cart’s motion on this graph?

The cart was at rest between 5 s and 7 s : From the distance of golf cart Vs time graph ; the car was at rest between 5s and 7s as the graph was flat with that time interval, meaning there was no change in distance.

The cart moved toward the starting point between 7 s and 12 s. : The graph depicts a negative slope at this time interval as the distance from starting point fell from about 26 m to 10 m

The cart moved away from the starting point between 8 s and 10 s. : At this time interval, the cart moved towards the starting not and not away. This could be seen in the decrease in Distance from starting point between the tune interval.

The cart moved away from the starting point between 2 s and 5 s. - - > The cart moved away from the starting point, with the positive slope signifying an increase in distance.

Therefore, The cart moved away from the starting point between 8 s and 10 s does not describe the motion of the cart on the graph.

You might be interested in
A wire is stretched right to its breaking point by a 5000 N force. A longer wire made of the same material has the same diameter
leva [86]

Answer:

Equal to 5000N

Explanation:

The stress on the material is defined by force per unit of cross-sectional area. So it depends on the force and the diameter of the wire, which is the same for both wires. The material that defines the breaking point, is also the same. Therefore, both wires have their breaking point the same at 5000N. The wire length plays no role in here.

4 0
3 years ago
how much gravitational potential energy do you give a 70 kg person when you lift him up 3 m in the air?
SCORPION-xisa [38]

Given gravitational potential energy when he's lifted is 2058 J.

Kinetic energy is transferred to the person.

Amount of kinetic energy the person has is -2058 J

velocity of person = 7.67 m/s².

<h3>Explanation:</h3>

Given:

Weight of person = 70 kg

Lifted height = 3 m

1. Gravitational potential energy of a lifted person is equal to the work done.

PE_g=W=m\times g\times h\\Acceleration due to gravity = g = 9.8 \ m/s^2 \\PE_g= m = m\times g\times h= 70\times 9.8 \times 3 = 2058\ kg.m/s^2 = 2058\ J

Gravitational potential energy is equal to 2058 Joules.

2. The Gravitational potential energy is converted into kinetic energy. Kinetic energy is being transferred to the person.

3. Kinetic energy gained = Potential energy lost = -PE_g = -2058\ kg.m/s^2

Kinetic energy gained by the person = (-2058 kg.m/s²)

4. Velocity = ?

Kinetic energy magnitude= \frac{1}{2} m\times v^2 = m\times g \times h

Solving for v, we get

v=\sqrt{2gh} =\sqrt{2\times 9.8 \times 3} = \sqrt{58.8} = 7.67 m/s^2

The person will be going at a speed of 7.67 m/s².

4 0
3 years ago
) A physics student wants to measure the stiffness of a spring (force required per cm stretched). He knows that according to Hoo
Maurinko [17]

Answer:

Explanation:

find the solution below

3 0
3 years ago
A train is accelerating at a rate of 2 km/hr/s.  If its initial velocity is 20 km/hr, what is its velocity after 30 seconds?
Mademuasel [1]
Here it is. *WARNING* VERY LONG ANSWER

________________________________________... 
<span>11) If Galileo had dropped a 5.0 kg cannon ball to the ground from a height of 12 m, the change in PE of the cannon ball would have been product of mass(m),acceleration(g)and height(h) </span>

<span>The change in PE =mgh=5*9.8*12=588 J </span>
<span>______________________________________... </span>
<span>12.) The 2000 Belmont Stakes winner, Commendable, ran the horse race at an average speed = v = 15.98 m/s. </span>

<span>Commendable and jockey Pat Day had a combined mass =M= 550.0 kg, </span>

<span>Their KE as they crossed the line=(1/2)Mv^2 </span>

<span>Their KE as they crossed the line=0.5*550*(15.98)^2 </span>

<span>Their KE as they crossed the line is 70224.11 J </span>

<span>______________________________________... </span>
<span>13)Brittany is changing the tire of her car on a steep hill of height =H= 20.0 m </span>

<span>She trips and drops the spare tire of mass = m = 10.0 kg, </span>

<span>The tire rolls down the hill with an intial speed = u = 2.00 m/s. </span>

<span>The height of top of the next hill = h = 5.00 m </span>

<span>Initial total mechanical energy =PE+KE=mgH+(1/2)mu^2 </span>

<span>Initial total mechanical energy =mgH+(1/2)mu^2 </span>

<span>Suppose the final speed at the top of second hill is v </span>

<span>Final total mechanical energy =PE+KE=mgh+(1/2)mv^2 </span>

<span>As mechanical energy is conserved, </span>

<span>Final total mechanical energy =Initial total mechanical energy </span>

<span>mgh+(1/2)mv^2=mgH+(1/2)mu^2 </span>

<span>v = sq rt [u^2+2g(H-h)] </span>

<span>v = sq rt [4+2*9.8(20-5)] </span>

<span>v = sq rt 298 </span>

<span>v =17.2627 m/s </span>

<span>The speed of the tire at the top of the next hill is 17.2627 m/s </span>
<span>______________________________________... </span>
<span>14.) A Mexican jumping bean jumps with the aid of a small worm that lives inside the bean. </span>

<span>a.)The mass of bean = m = 2.0 g </span>

<span>Height up to which the been jumps = h = 1.0 cm from hand </span>

<span>Potential energy gained in reaching its highest point= mgh=1.96*10^-4 J or 1960 erg </span>

<span>b.) The speed as the bean lands back in the palm of your hand =v=sq rt2gh =sqrt 0.196 =0.4427 m/s or 44.27 cm/s </span>
<span>_____________________________ </span>
<span>15.) A 500.-kg horse is standing at the top of a muddy hill on a rainy day. The hill is 100.0 m long with a vertical drop of 30.0 m. The pig slips and begins to slide down the hill. </span>

<span>The pig's speed a the bottom of the hill = sq rt 2gh = sq rt 2*9.8*30 =sq rt 588 =24.249 m/s </span>
<span>__________________________________ </span>
<span>16.) While on the moon, the Apollo astronauts Neil Armstrong jumped up with an intitial speed 'u'of 1.51 m/s to a height 'h' of 0.700 m, </span>

<span>The gravitational acceleration he experienced = u^2/2h = 2.2801 /(2*0.7) = 1.629 m/s^2 </span>
<span>______________________________________... </span>

<span>EDIT </span>
<span>1.) A train is accelerating at a rate = a = 2.0 km/hr/s. </span>

<span>Acceleration </span>

<span>Initial velocity = u = 20 km/hr, </span>

<span>Velocity after 30 seconds = v = u + at </span>

<span>Velocity after 30 seconds = v = 20 km/hr + 2 (km/hr/s)*30s = </span>

<span>Velocity after 30 seconds = v = 20 km/hr + 60 km/hr = 80 km/ hr </span>

<span>Velocity after 30 seconds = v = 80 km/hr=22.22 m/s </span>
<span>_______________________________- </span>
<span>2.) A runner achieves a velocity of 11.1 m/s 9 s after he begins. </span>

<span>His acceleration = a =11.1/9=1.233 m/s^2 </span>

<span>Distance he covered = s = (1/2)at^2=49.95 m</span>
7 0
3 years ago
The moon orbits the earth at a distance of 3.85 x 10^8 m. Assume that this distance is between the centers of the earth and the
Inga [223]

Answer:

27.5 days

0.92 month

Explanation:

r = radius of the orbit of moon around the earth = 3.85\times10^{8} m

M = Mass of earth = 5.98\times10^{24} m

T = Time period of moon's motion

According to Kepler's third law, Time period is related to radius of orbit as

T^{2} = \frac{4\pi ^{2} r^{3}  }{GM}

inserting the values, we get

T^{2} = \frac{4(3.14)^{2} (3.85\times10^{8})^{3}  }{(6.67\times10^{-11})(5.98\times10^{24})}\\T = 2.3754\times10^{6} sec

we know that

1 day = 24 hours = 24 x 3600 sec = 86400 s

T = 2.3754\times10^{6} sec \frac{1 day}{86400 sec} \\T = 27.5 days

1 month = 30 days

T = 27.5 days \frac{1 month}{30 days} \\T = 0.92 month

6 0
3 years ago
Other questions:
  • What effect does dropping the sandbag out of the cart at the equilibrium position have on the amplitude of your oscillation? Vie
    9·2 answers
  • If a light wave is reflected from the surface of the medium, which property of the light wave will change with the reflected wav
    8·2 answers
  • If I move 15ft foward, 15 ft backwards, 15 ft to the right, 15ft to the left where am I?
    7·2 answers
  • When we talk about how a Ferrari obtains a top speed of 349 km/h, are we referring to average speed or instantaneous? How do you
    13·1 answer
  • A 200 kg weather rocket is loaded with 100 kg of fuel and fired straight up. It accelerates upward at 30 m/s2 for 35 s , then ru
    9·1 answer
  • On what principle does a bottle opener work
    10·1 answer
  • If the actual mechanical advantage of a machine is 4.2, and the input force is 10.0 N, what is the output force?
    6·1 answer
  • Why would an older house have more safety risks then a newer house
    15·2 answers
  • 8. Placing your vehicle between the pilot/escort vehicle and an oversize/overweight vehicle can be dangerous.A. TrueB. False
    6·1 answer
  • Suppose your salary in 2012 is $70,000. Assuming an annual inflation rate of 7%, what salary do you need to earn in 2020 in orde
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!