Answer:
The new volume of the gas is 276.45 mL.
Explanation:
Charles's law indicates that for a given sum of gas at constant pressure, as the temperature increases, the volume of the gas increases, and as the temperature decreases, the volume of the gas decreases.
Charles's law is a law that mathematically says that when the amount of gas and pressure are kept constant, the quotient that exists between the volume and the temperature will always have the same value:

Analyzing an initial state 1 and a final state 2, it is satisfied:

In this case:
- V1= 250 mL
- T1= 293 K
- V2= ?
- T2= 324 K
Replacing:

Solving:

V2= 276.45 mL
<em><u>The new volume of the gas is 276.45 mL.</u></em>
Answer:
Sn + 2H2O ==> Sn(OH)2 + 2H2
67.3 g Sn x 1 mol/119 g x 2 mol H2/mol Sn x 22.4 L/mole = answer in liters
Explanation:
Sn + 2H2O ==> Sn(OH)2 + 2H2
67.3 g Sn x 1 mol/119 g x 2 mol H2/mol Sn x 22.4 L/mole = answer in liters
There’s only one measurement the question doesn’t make sense
Equation is as follow,
<span> 4 Na (s) + O</span>₂ <span>(g) → 2Na</span>₂<span>O (s)
According to equation,
91.92 g (4 moles) of Na produces = 123.92 g (2 moles) of Na</span>₂O
So,
17.4 g of Na will produce = X g of Na₂O
Solving for X,
X = (17.4 g × 123.92 g) ÷ 91.92 g
X = 23.45 g of Na₂O
Answer:
The molar mass of copper (II) nitrate is 187.5 g/mol.
Explanation:
The molar mass is the mass of all the atoms in a molecule in grams per mole. To calculate the molar mass of a molecule, we first obtain the atomic weights from the individual elements in a periodic table. We then count the number of atoms and multiply it by the individual atomic masses.