Explanation:
Whenever we need to make a dilute solution of an acid then it is necessary to add water or non-acidic component into the acid first. This is because addition of water or non-acidic component directly into the acid could be highly exothermic in nature.
As a result, the acid can splutter and can cause burning of skin and other serious damage.
So, in order to avoid such type of damage the addition of water or non-acidic component into the acid actually helps to minimize the heat generated.
Thus, we can conclude that correct order of steps for making a more dilute solution of an acid is that either add all of the water or non-acid component first, or add a significant portion, before adding the acid to the mixture.
The correct answer is: [C]:
___________________________________________________________
"<span>pressure and the number of gas molecules are directly related."
___________________________________________________________
<u>Note</u>: The conclusion was: "</span> as the pressure in a system increases, the number of gas molecules increases" — over the course of many trials.
This means that the "pressure" and the "number of gas molecules" are directly related.
Furthermore, this conclusion is consistent with the "ideal gas law" equation:
" PV = nRT " ;
____________________________________________________________
in which:
"P = Pressure" ;
"n = number of gas molecules" ;
___________________________________________________________
All other factors held equal, when "n" (the "number of gas molecules")
increases in value (on the "right-hand side" of the equation), the value for "P" (the "pressure" — on the "left-hand side" of the equation), increases.
___________________________________________________________
Answer:The 2nd and 3rd one.
Explanation:
It has the same number of protons but different amount of nuetrons.
Question:
A chemistry student needs of 10 g isopropenylbenzene for an experiment. He has available 120 g of a 42.7% w/w solution of isopropenylbenzene in acetone. Calculate the mass of solution the student should use. If there's not enough solution, press the "No solution" button.
Answer:
The answer to the question is as follows
The mass of solution the student should use is 23.42 g.
Explanation:
To solve the question we note the following
A solution containing 42.7 % w/w of isopropenylbenzene in acetone has 42.7 g of isopropenylbenzene in 100 grams of the solution
Therefore we have 10 g of isopropenylbenzene contained in
100 g * 10 g/ 42.7 g = 23.42 g of solution
Available solution = 120 g
Therefore the quantity to used from the available solution = 23.42 g of the isopropenylbenzene in acetone solution.