Answer:
Option A; V = 2.92 L
Explanation:
If we assume a lot of things, like:
The gas is an ideal gas.
The temperature is constant.
The gas does not interchange mass with the environment.
Then we have the relation:
P*V = n*R*T = constant.
Where:
P = pressure
V = volume
n = number of moles
R = constant of the ideal gas
T = temperature.
We know that when P = 0.55 atm, the volume is 5.31 L
Then:
(0.55 atm)*(5.31 L) = constant
Now, when the gas is at standard pressure ( P = 1 atm)
We still have the relation:
P*V = constant = (0.55 atm)*(5.31 L)
(1 atm)*V = (0.55 atm)*(5.31 L)
Now we only need to solve this for V.
V = (0.55 atm/ 1 atm)*(5.31 L) = 2.92 L
V = 2.92 L
Then the correct option is A.
Answer:
0.0905 M
Explanation:
Let's consider the neutralization reaction between H2SO4 and KOH.
H₂SO₄ + 2 KOH → K₂SO₄ + 2 H₂O
22.87 mL of 0.158 M KOH react. The reacting moles of KOH are:
0.02287 L × 0.158 mol/L = 3.61 × 10⁻³ mol
The molar ratio of H₂SO₄ to KOH is 1:2. The reacting moles of H₂SO₄ are 1/2 × 3.61 × 10⁻³ mol = 1.81 × 10⁻³ mol
1.81 × 10⁻³ moles of H₂SO₄ are in 20.0 mL. The molarity of H₂SO₄ is:
M = 1.81 × 10⁻³ mol / 0.0200 L = 0.0905 M
Explanation:
im sorry but it depends on what the diagram looks like for the problem
Answer:
a. 0.182
b. 1.009
c. 1.819
Explanation:
Henderson-Hasselbach equation is:
pH = pKa + log [salt / acid]
Let's replace the formula by the given values.
a. 3 = 3.74 + log [salt / acid]
3 - 3.74 = log [salt / acid]
-0.74 = log [salt / acid]
10⁻⁰'⁷⁴ = 0.182
b. 3.744 = 3.74 + log [salt / acid]
3.744 - 3.74 = log [salt / acid]
0.004 = log [salt / acid]
10⁰'⁰⁰⁴ = 1.009
c. 4 = 3.74 + log [salt / acid]
4 - 3.74 = log [salt / acid]
0.26 = log [salt / acid]
10⁰'²⁶ = 1.819
Answer:
<h2>0.102 L</h2>
Explanation:
The new pressure can be found by using the formula for Boyle's law which is
Since we are finding the new volume
From the question we have
We have the final answer as
<h3>0.102 L</h3>
Hope this helps you