The information given to us shows that triangles XYZ and JKL is not enough to prove they are congruent by AAS, ASA, nor SAS.
<h3>The Triangle Congruence Theorems</h3>
- Two triangles are congruent by the AAS congruence theorem if they both have two pairs of congruent angles and a pair of congruent non-included sides.
- Two triangles are congruent by the ASA congruence theorem if they both have two pairs of congruent angles and a pair of congruent included sides.
- Two triangles are congruent by the SAS congruence theorem if they both have two pairs of congruent sides and a pair of congruent included angles.
Thus, the information given to us shows that triangles XYZ and JKL is not enough to prove they are congruent by AAS, ASA, nor SAS.
Learn more about triangle congruence theorem on:
brainly.com/question/2579710
Stan's heart rate, in beats per minute, was measured 20 times at random. The results are 82, 84, 98, 112, 97, 93, 91, 87, 112, 8
Licemer1 [7]
Answer:
(80.4942, 94.9052)
Step-by-step explanation:
The sample mean is x = 87.7.
The sample standard deviation is s = 11.26.
At 99% confidence and 19 degrees of freedom, the critical value is t = 2.861.
The confidence interval is:
x ± t (s/√n)
87.7 ± 2.861 (11.26 / √20)
87.7 ± 7.2053
(80.4947, 94.9053)
Answer:
1.) Yes
2.) Yes
Step-by-step explanation:
Given that
n = k(k + 7)
If k is a positive integer and n = k(k + 7), is n divisible by 6 ?
(1) k is odd. Yes.
Let assume that k = 3
Then, n = 3(3 + 7)
n = 3 × 10
n = 30.
30 is divisible by 6.
(2) When k is divided by 3, the remainder is 2. That is,
Let k = 5
Then,
5/3 = 1 remainder 2
Substitute k into the equation
n = k(k + 7)
n = 5(5 + 7)
n = 5 × 12
n = 60
And 60 is divisible by 6.
Therefore, the answer to both questions is Yes.
Answer:
Impossible
Step-by-step explanation:
Solve the answer 2-5*28 = -138
This would have no answer since an exponential expression can't equal an negative unless it's a negative answer, but in this case, there is no answer that would get you -138.