The picture in the attached figure
the correct question is
<span>If the angle ZYX measures 45 degrees, then arc
XZ measures 45 degrees. TRUE OR FALSE ?!
we know that
if </span>angle ZYX measures 45 degrees
then
arc XZ=angle ZYX---------> by central angle
therefore
arc XZ=45°
the answer isTRUE
The third term of the expansion is 6a^2b^2
<h3>How to determine the third term of the
expansion?</h3>
The binomial term is given as
(a - b)^4
The r-th term of the expansion is calculated using
r-th term = C(n, r - 1) * x^(n - r + 1) * y^(r - 1)
So, we have
3rd term = C(4, 3 - 1) * (a)^(4 - 3 + 1) * (-b)^(3-1)
Evaluate the sum and the difference
3rd term = C(4, 2) * (a)^2 * (-b)^2
Evaluate the exponents
3rd term = C(4, 2) * a^2b^2
Evaluate the combination expression
3rd term = 6 * a^2b^2
Evaluate the product
3rd term = 6a^2b^2
Hence, the third term of the expansion is 6a^2b^2
Read more about binomial expansion at
brainly.com/question/13602562
#SPJ1
Volume of pyramid is
.
The pyramid has a height 14 inches and a base area of 60 in2.
What is volume?
Volume is a three - dimensional quantity that is used to measure the capacity of a solid shape.
Volume of the pyramid =
X 
= 
=

So the volume of pyramid =

Learn more about the Volume visit:
https://brainly.in/question/609711
#SPJ1
Check the picture.
let the length of a side of each of the squares removed be x.
The box formed will have dimensions: 80-2x, 50-2x, x(the height)
So the volume can be expressed as a function of x as follows:
f(x)=(80-2x)(50-2x)x=
![[4000-160x-100x+4 x^{2} ]x=(4 x^{2}-260x+4000)x](https://tex.z-dn.net/?f=%5B4000-160x-100x%2B4%20x%5E%7B2%7D%20%5Dx%3D%284%20x%5E%7B2%7D-260x%2B4000%29x)
so

the solutions of f'(x)=0 gives the inflection points, so the candidates for maxima points,

solving the quadratic equation, either by a calculator, graphing software, or by other algebraic methods as the discriminant formula, we find the solutions
x=10 and x=33.333
plug in f(x) these values to see which greater:

cm cubed

which is negative because (50-66.666)<0
Answer: 18000 cm cubed