Hey there!
Chemical changes are changes in object's chemical compounds and chemical compositions, and often can't be reversed.
Here's an example:
If you have a piece of paper and you happen to burn it, that can't be reversed.
In other words, it can't be "un-burned". Nothing can restore it to its previous state.
Hopefully this helped!
M C C O R M I C K T E A M ’ S O P E N Q U A N T U M M AT E R I A L S D ATA B A S E
O F F E R S U N L I M I T E D A C C E S S T O
ANALYSES OF NEARLY 300,000 COMPOUNDS
Butter won't melt in a fridge because of intermolecular tensions. While the bonds inside of the fat molecules are unbroken, the attractions between the fat molecules are weaker.
What intermolecular forces are present in butter?
The intermolecular forces known as London dispersion forces are the weakest and are most prominent in hydrocarbons. Due to the fact that butter molecules are hydrocarbons, London dispersion forces do exist between them.
How do intermolecular forces affect melting?
More energy is required to stop the attraction between these molecules as the intermolecular forces become more powerful. Because of this, rising intermolecular forces are accompanied with rising melting points.
Which forces are intramolecular and which are intermolecular?
Intramolecular forces are those that hold atoms together within molecules. The forces that hold molecules together are known as intermolecular forces.
Learn more about intermolecular forces: brainly.com/question/9328418
#SPJ4
Answer:
its C, because the cocunut tree gets energy from the sun and makes it into cocunut that is true
Explanation:
its C, because the cocunut tree gets energy from the sun and makes it into cocunut that is true
Answer : The boiling point of water increases, 
Solution : Given,
Moles of solute (sugar) = 4 moles
Mass of solvent (water) = 1 Kg

i = 1 for sugar
Formula used :

Where,
= elevation in boiling point
= elevation constant
m = molality
= moles of solute (sugar)
= mass of solvent (water)
i = van't Hoff factor
Now put all the given values in this formula, we get the elevation in boiling point of water.

Therefore, the elevation in boiling point of water is 