Here is your answer:
Theirs 12 protons, 12 electrons, and 14 neutrons!
Reason: When you look at the atomic number for any element on the table with all of the elements that's how many protons, and electrons their are in the substance (or element) you find how many neutrons by rounding the number under the atomic number which will equal 14!
Your answer is 12:12:14
Answer:
Like dissolves like" is an expression used by chemists to remember how some solvents work. It refers to "polar" and "nonpolar" solvents and solutes. Basic example: Water is polar. Oil is non polar. ... Like dissolves like, that means polar dissolves polar, so water dissolves salt.
Explanation:
Because Boron likes to lose 3 electrons when it undergoes ionization, we draw a boron ion like a helium atom, with just 2 electrons in the first shell, and 0 in the second
The given sentence is part of a longer question.
I found this question with the same sentence. So, I will help you using this question:
For the reaction N2O4<span>(g) ⇄ 2NO</span>2(g), a reaction mixture at a certain temperature initially contains both N2O4 and NO2 in their standard states (meaning they are gases with a pressure of 1 atm<span>). If </span>Kp = 0.15, which statement is true of the reaction mixture before
any reaction occurs?
(a) Q = K<span>; The reaction </span>is at equilibrium.
(b) Q < K<span>;
The reaction </span>will proceed to
the right.
(c) Q > K<span>; The reaction </span>will proceed to the left.
The answer is the option (c) Q > K<span>; The reaction will proceed to the </span>left,
since Qp<span> = </span>1<span>, and 1 > 0.15.</span>
Explanation:
Kp is the equilibrium constant in term of the partial pressures of the gases.
Q is the reaction quotient. It is a measure of the progress of a chemical reaction.
The reaction quotient has the same form of the equilibrium constant but using the concentrations or partial pressures at any moment.
At equilibrium both Kp and Q are equal. Q = Kp
If Q < Kp then the reaction will go to the right (forward reaction) trying to reach the equilibrium,
If Q > Kp then the reaction will go to the left (reverse reaction) trying to reach the equilibrium.
Here, the state is that both pressures are 1 atm, so Q = (1)^2 / 1 = 1.
Since, Q = 1 and Kp = 0.15, Q > Kp and the reaction will proceed to the left.