Particles as small as atoms exist.
Answer:
Explanation:
48.16%
Well, both abundances have to total 100% so is Ag-107 is 51.84%, then Ag-109 must be 100 – 51.84 = 48.16%.
Hope This Helps :)
We can use two equations for this problem.<span>
t1/2 = ln
2 / λ = 0.693 / λ
Where t1/2 is the half-life of the element and λ is
decay constant.
20 days = 0.693 / λ
λ = 0.693 / 20 days
(1)
Nt = Nο eΛ(-λt) (2)
Where Nt is atoms at t time, No is the initial amount of substance, λ is decay constant and t is the time
taken.
t = 40 days</span>
<span>No = 200 g
From (1) and (2),
Nt = 200 g eΛ(-(0.693 / 20 days) 40 days)
<span>Nt = 50.01 g</span></span><span>
</span>Hence, 50.01 grams of isotope will remain after 40 days.
<span>
</span>
It defines the element. If you change the protons, you change the type of element. A proton is positively charged and is most of the mass of the atom, next to the neutron. Neutrons have a very very very slightly higher mass.
Answer:
(a) The coefficient of performance of an irreversible refrigeration cycle is always less than the coefficient of performance of a reversible refrigeration cycle when both exchange energy by heat transfer with the same two reservoirs.
Explanation:
According to the Kelvin–Planck statement of the second law of thermodynamics ,it is not possible to construct a device which operates in cycle and does not produce effect on the environment than the production of work.
We know that
Coefficient of performance is the ratio of desired effect to the work input in a cycle.
Given all option is correct but most appropriate option is a.
So the option a is correct
(a) The coefficient of performance of an irreversible refrigeration cycle is always less than the coefficient of performance of a reversible refrigeration cycle when both exchange energy by heat transfer with the same two reservoirs.