Answer:
C
Explanation:
Transverse waves always have the same wavelengths.
Answer:
Average speed = distance/time
From 1 to 9 seconds:
Distance covered = 1 - 0.2 = 0.8 km
Time = 9 - 1 = 8 sec
Average speed = 0.8 km / 8 sec
Average speed = 0.1 km/s .
The average speed for the whole test is 1.6 km / 20 sec = 0.08 km/sec. A graph of speed vs time would average out as a horizontal line at 0.08 km/sec from 1 sec to 21 sec. The area under it would be (0.08 km/s) x (20 sec) = 1.6 km.
Surprise surprise ! The area under a speed/time graph is the distance covered during that time !
In closing, I want to express my gratitude for the gracious bounty of 3 points with which I have been showered. Moreover, the green breadcrust and tepid cloudy water have also been refreshing.
Explanation:
Answer:
s = 1800 m = 1.8 km
Explanation:
The distance, the speed, and the time of reach of the sound are related by the following formula:

where,
s = distance
v = speed
t = time
FOR WATER:
---------------------- eq (1)
where,
s = distance between ship and diver = ?
= speed of sound in water = 1440 m/s
t = time taken by sound in water
FOR AIR:
---------------------- eq (2)
where,
s = distance between ship and diver = ?
= speed of sound in water = 344 m/s
t + 4 s = time taken by sound in water
Comparing eq (1) and eq (2),because distance remains constant:

t = 1.25 s
Now using this value in eq (1):

<u>s = 1800 m = 1.8 km</u>
Answer:
The moment of inertia I is
I = 2.205x10^-4 kg/m^2
Explanation:
Given mass m = 0.5 kg
And side lenght = 0.03 m
Moment of inertia I = mass x radius of rotation squared
I = mr^2
In this case, the radius of rotation is about an axis which is both normal (perpendicular) to and through the center of a face of the cube.
Calculating from the dimensions of the the box as shown in the image below, the radius of rotation r = 0.021 m
Therefore,
I = 0.5 x 0.021^2 = 2.205x10^-4 kg/m^2
<span>Scientists can see the effect of black holes on nearby stars.
So, option B is your answer.
Hope this helps!
</span>