The particle with sharp ends have the slowest rate of deposition
Answer: Option C
<u>Explanation:</u>
As per aerosol physics, deposition is a process where aerosol particles accumulate or settle on solid surfaces. Thereby, it reduces the concentration of particles in the air. Deposition velocity (rate of deposition) defines from F = vc, where v is deposition rate, F denotes flux density and c refers concentration.
Deposition velocity is slowest for particles of intermediate-sized particles because the frictional force offers resistance to the flow. Density is directly proportional to the deposition rate so clearly shows that high-density particles settle faster. Due to friction, round and large-sized particles deposit faster than oval/flattened sediments.
Answer: Magnitude of the average force exerted on the glove by the other boxer is 827.86 N (approximately 828 N).
Explanation: Impulse is defined as the force acting on an object for a short period or interval of time.
Mathematically it is given by the relation:
Impulse = Force
Time
According to the numerical values given in the question, I = 202 Ns and T = 0.244 s
So, Force F =
=
= 827.86 N
Magnitude of the average force exerted on the glove by the other boxer is 827.86 N (approximately 828 N).
Answer:
v=20m/S
p=-37.5kPa
Explanation:
Hello! This exercise should be resolved in the next two steps
1. Using the continuity equation that indicates that the flow entering the nozzle must be the same as the output, remember that the flow equation consists in multiplying the area by the speed
Q=VA
for he exitt
Q=flow=5m^3/s
A=area=0.25m^2
V=Speed
solving for V

velocity at the exit=20m/s
for entry

2.
To find the pressure we use the Bernoulli equation that states that the flow energy is conserved.

where
P=presure
α=9.810KN/m^3 specific weight for water
V=speed
g=gravity
solving for P1

the pressure at exit is -37.5kPa
If it's volume changes when you move it to the new container it would be a solid