Robert Hooke<span> (1635 - 1703) The Englishman </span>Robert Hooke<span> (18th July 1635 - 3rd March 1703) was an architect, natural philosopher and brilliant </span>scientist, best known for his law of elasticity (Hooke's<span> law), his book Micrographia, published in 1665 and for first applying the word "cell" to describe the basic unit of life.</span>
To solve this problem we will use the mathematical definition of the light years in metric terms, from there, through the kinematic equations of motion we will find the distance traveled as a function of the speed in proportion to the elapsed time. Therefore we have to
means Light Year
Then

If we have that

Where,
v = Velocity
x = Displacement
t = Time
We have that
= Speed of light





Therefore will take 14.399 years
Firstly, let's convert the velocities in km/hr to m/s
32*1000/3600=8.89m/s
54*1000/3600=15m/s
From the formula, acceleration=V-U/t
15-8.89/8=0.76m/s²
hope this helps.
Answer:
387 volts
Explanation:
Ohm's law is used to relate voltage, current and resistance.
The formula is as follows:V = I * R
where:
V is the applied voltage (measured in volts)
I is the current flowing (measured in amperes)
R is the resistance (measured in ohm)
In the given, we have:
current (I) = 9 amperes
resistance (R) = 43 ohm
Substitute with the givens in the above formula to get the voltage as follows:
V = 9 * 43
V = 387 volts
Hope this helps :)
The EMF of the battery includes the force to to drive across its internal resistance. the total resistance:
R = internal resistance r + resistance connected rv
R = r + rv
Now find the current:
V 1= IR
I = R / V1
find the voltage at the battery terminal (which is net of internal resistance) using
V 2= IR
So the voltage at the terminal is:
V = V2 - V1
This is the potential difference vmeter measured by the voltmeter.