3 bulbs are in series and if the same 3 bulbs are in parallel with the same battery then the bulbs that are connected in parallel will be dimmer
<h3>What is power?</h3>
The rate of doing work is known as power. The Si unit of power is the watt.
Power =work/time
The mathematical expression for the electric power is as follows
P = VI
The same current flows through both bulbs when they are connected in series. A greater voltage drop across the bulb with the higher resistance will result in higher power dissipation and brightness. In the case of the parallel combination, the bulb will be dimmer
Thus, If the same three bulbs are connected in series and parallel with the same battery, the parallelly connected bulbs will be dimmer, therefore the correct option is A
Learn more about power from here
brainly.com/question/3854047
#SPJ1
6x2=12m
6x18=108
12m+108
Simplified: m+9 bc 12/12 and 108/12
Elemental hydrogen (H, element 1), nitrogen (N, element 7), oxygen (O, element 8), fluorine (F, element 9), and chlorine (Cl, element 17) are all gases at room temperature, and are found as diatomic molecules.
Titanium, Lead, Potassium, and Silicon are solids at normal temperature.
Mercury and bromine (Br) are the only liquid elements at standard pressure and temperature (Hg).
<h3>What are chemical elements?</h3>
A chemical element is a species of atoms, including the pure substance made entirely of that species, that have a specific number of protons in their nuclei. Chemical elements, in contrast to chemical compounds, cannot be reduced by any chemical process into simpler molecules.
To learn more about chemical elements visit:
brainly.com/question/20573603
#SPJ4
Answer:
b) total energy input equals total energy output
Explanation:
The first law of thermodynamics is a generalization of the conservation of energy in thermal processes. It is based on Joule's conclusion that heat and energy are equivalent. But to get there you have to get around some traps along the way.
From Joule's conclusion we might be tempted to call heat "internal" energy associated with temperature. We could then add heat to the potential and kinetic energies of a system, and call this sum the total energy, which is what it would conserve. In fact, this solution works well for a wide variety of phenomena, including Joule's experiments. Problems arise with the idea of heat "content" of a system. For example, when a solid is heated to its melting point, an additional "heat input" causes the melting but without increasing the temperature. With this simple experiment we see that simply considering the thermal energy measured only by a temperature increase as part of the total energy of a system will not give a complete general law.
Instead of "heat," we can use the concept of internal energy, that is, an energy in the system that can take forms not directly related to temperature. We can then use the word "heat" to refer only to a transfer of energy between a system and its environment. Similarly, the term work will not be used to describe something contained in the system, but describes a transfer of energy from one system to another. Heat and work are, therefore, two ways in which energy is transferred, not energies.
In an isolated system, that is, a system that does not exchange matter or energy with its surroundings, the total energy must remain constant. If the system exchanges energy with its environment but not matter (what is called a closed system), it can do so only in two ways: a transfer of energy either in the form of work done on or by the system, either in the form of heat to or from the system. In the event that there is energy transfer, the change in the energy of the system must be equal to the net energy gained or lost by the environment.
Answer:
2.9 m
Explanation:
First find the time it takes to reach the floor.
y = y₀ + v₀ t + ½ at²
(0 m) = (1.6 m) + (0 m/s) t + ½ (-9.8 m/s²) t²
t = 0.571 s
Next, find the distance it travels in that time.
x = x₀ + v₀ t + ½ at²
x = (0 m) + (5.0 m/s) (0.571 s) + ½ (0 m/s²) (0.571 s)²
x = 2.86 m
Rounded to two significant figures, the marble travels 2.9 meters in the x direction.