Answer:
64 kPa
Explanation:
The pressure exerted by a force on a surface is given by

where
p is the pressure
F is the force
A is the area on which the force is exerted
In this problem, let's call:
F = the weight of the performer, which is the force
A = the area of 1 stilt
At the beginning, the performer is standing on both stilts, so the area on which he exerts pressure is 2A. So the pressure is
(1)
Later, he stands on one stilt only. The force exerted is still the same (his weight), however, the area is now reduced to A; therefore, the new pressure is

which is twice the value calculated in (1); so, the new pressure is

(since you asked for basic understanding only, I am not including actual calculations. Please let me know in the comments section if you wish to verify your solution(s))
For (b): Use the formula for distance (s) made during an accelerated motion:

with v_0 and s_0 being the initial velocity and distance, both 0 in this case, and with "a" denoting the acceleration, in this case solely due to gravitational acceleration so: "g."
You are given the distance made, namely 10 m, and the duration t (0.88s) and so using the formula above you can solve for g.
For (c), to determine the final velocity at time 0.88s use the formula for the instantaneous velocity of an accelerated motion
(velocity at time t) = (acceleration) x (time)
again, with acceleration due to gravity, i.e., a = g and with g as determined under (b).
If my calculation is correct, this mystery planet could be the Jupiter.
y=9 because you would need to subtract 3 from both sides because its a -3, adding 3 would cancel it out on one side leaving y=9. 9 is the answer:)-May
Explanation:
maturity also get disorganised
The best answer is D) Inertia
Inertia is the word assigned to the Newtonian law of motion that an object in motion tends to stay in motion, in a straight line and in the same direction at the same speed, as long as no other forces are acting on it.
In deep space, there is no air resistance or any other force that would change the ship's velocity, so the law of inertia would keep it moving at the same speed forever.