Answer:
59%
Step-by-step explanation:
The information from Satellite Company Y is:
65 people watch live and 94 people watch recorded.
The total number of people from Y is:
65 + 94 = 159
So the probability that a random person from Y watches recorded shows more often is given by the division of the number of people watching more recorded shows (94) over the total number of people (159):
Probability = 94 / 159 = 0.5912 = 59.12%
Rounding to nearest whole percent, we have 59%
15!!! is the answer to your question:)
Answer:
similar triangles
Step-by-step explanation:
First of all, what are similar shapes? Well, two shapes are similar if you can turn one into the other by moving, rotating, flipping, or scaling. That means you can make one shape bigger or smaller. In this case, we know that triangles ABC and DEF are mathematically similar. The area of triangles ABC is , so we need to know the area of triangle DEF.
From math, let's call the scaling factor, so we know that for any similar figures, the ratio of the areas of any are in proportion to . In other words, if is the area of triangle ABC, and is the area of triangle DEF, then we can write the following relationship:
So... hmm bear in mind, when the boat goes upstream, it goes against the stream, so, if the boat has speed rate of say "b", and the stream has a rate of "r", then the speed going up is b - r, the boat's rate minus the streams, because the stream is subtracting speed as it goes up
going downstream is a bit different, the stream speed is "added" to boat's
so the boat is really going faster, is going b + r
notice, the distance is the same, upstream as well as downstream
thus
![\bf \begin{cases} b=\textit{rate of the boat}\\ r=\textit{rate of the river} \end{cases}\qquad thus \\\\\\ \begin{array}{lccclll} &distance&rate&time(hrs)\\ &----&----&----\\ upstream&48&b-r&4\\ downstream&48&b+4&3 \end{array} \\\\\\ \begin{cases} 48=(b-r)(4)\to 48=4b-4r\\\\ \frac{48-4b}{-4}=r\\ --------------\\ 48=(b+r)(3)\\ -----------------------------\\\\ thus\\\\ 48=\left[ b+\left(\boxed{\frac{48-4b}{-4}}\right) \right] (3) \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%0Ab%3D%5Ctextit%7Brate%20of%20the%20boat%7D%5C%5C%0Ar%3D%5Ctextit%7Brate%20of%20the%20river%7D%0A%5Cend%7Bcases%7D%5Cqquad%20thus%0A%5C%5C%5C%5C%5C%5C%0A%0A%5Cbegin%7Barray%7D%7Blccclll%7D%0A%26distance%26rate%26time%28hrs%29%5C%5C%0A%26----%26----%26----%5C%5C%0Aupstream%2648%26b-r%264%5C%5C%0Adownstream%2648%26b%2B4%263%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5C%5C%0A%0A%5Cbegin%7Bcases%7D%0A48%3D%28b-r%29%284%29%5Cto%2048%3D4b-4r%5C%5C%5C%5C%0A%5Cfrac%7B48-4b%7D%7B-4%7D%3Dr%5C%5C%0A--------------%5C%5C%0A48%3D%28b%2Br%29%283%29%5C%5C%0A-----------------------------%5C%5C%5C%5C%0Athus%5C%5C%5C%5C%0A48%3D%5Cleft%5B%20b%2B%5Cleft%28%5Cboxed%7B%5Cfrac%7B48-4b%7D%7B-4%7D%7D%5Cright%29%20%5Cright%5D%20%283%29%0A%5Cend%7Bcases%7D)
solve for "r", to see what the stream's rate is
what about the boat's? well, just plug the value for "r" on either equation and solve for "b"