Answer:
Let p represent the # of pages in the book. Then, Nora has already read 0.30p pages and has 0.70p pages left to read.
If she reads 25% pages/night, that means reading 0.25(0.70)p pages per night, or 17.5 pages/night. If 28% p/n, that means 0.28(0.70)p pages/night, or 19.6p pages/night.
How many nights will it take Nora to finish the book if she reads 25% of 7/10 of the book per night? Without any calculations, we can answer this by "4 nights, since she reads 1/4 of the unread portion of the book per night."
If she reads 28% of 7/10 of the book per night, that will require fewer nights:
First night: 28%
Second night: 28%
Third night: 28%
Total: 3(28%) = 84%
This leaves 16% to read on the final night.
This is one interpretation of what I think is a poorly worded question.
The author of this question might have meant reading 25% of the remaining unread pages per night, which leads to a different answer.
Looking at the given points on the right side from (0,2) to (1,6) for 1 increase in X ( 1-0=1) the Y value increases by 3 ( 6/2 = 3)
This same increase happens for th other two points: 18/6 = 3
54 / 18 = 3
The rate of increase is 3.
I don’t see any graph attached to the question
It’s the second one, 65.4
V=1
6πd3=1
6·π·53≈ 65.44985in³
Answer:
7.2units
Step-by-step explanation: