21.2264 is 21.2 rounded to the nearest tenths; the place after the decimal is there tenths place so in the hundreths place, the number 2 is less than 5 therefore rounding it to 2.
Step-by-step explanation:
<h2>
<em><u>You can solve this using the binomial probability formula.</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows:</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: </u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) </u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157when x=3 (4 3)(1/6)^3(5/6)^4-3 = 0.0154</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157when x=3 (4 3)(1/6)^3(5/6)^4-3 = 0.0154when x=4 (4 4)(1/6)^4(5/6)^4-4 = 0.0008</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157when x=3 (4 3)(1/6)^3(5/6)^4-3 = 0.0154when x=4 (4 4)(1/6)^4(5/6)^4-4 = 0.0008Add them up, and you should get 0.1319 or 13.2% (rounded to the nearest tenth)</u></em></h2>
![\huge \bf༆ Answer ༄](https://tex.z-dn.net/?f=%5Chuge%20%5Cbf%E0%BC%86%20Answer%20%E0%BC%84)
Let the capacity of bus be x students
And van be y students, now ;
From the given statements we get two equations ~
![{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:2x + 10y = 260 \: \: \: \: \: (1)](https://tex.z-dn.net/?f=%7B%20%5Cqquad%7B%20%5Csf%7B%20%5Cdashrightarrow%7D%7D%7D%20%20%5C%3A%20%20%5C%3A%20%5Csf%20%5C%3A2x%20%2B%2010y%20%3D%20260%20%5C%3A%20%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%5C%3A%20%20%281%29)
![{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:13x + 5y = 670 \: \: \: \: \: (2)](https://tex.z-dn.net/?f=%7B%20%5Cqquad%7B%20%5Csf%7B%20%5Cdashrightarrow%7D%7D%7D%20%20%5C%3A%20%20%5C%3A%20%5Csf%20%5C%3A13x%20%2B%205y%20%3D%20670%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%282%29)
multiply the equation (2) with 2 [ it won't change the values ]
![{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:2x + 10y = 260 \: \: \: \: \: \: \: \: \: (1)](https://tex.z-dn.net/?f=%7B%20%5Cqquad%7B%20%5Csf%7B%20%5Cdashrightarrow%7D%7D%7D%20%20%5C%3A%20%20%5C%3A%20%5Csf%20%5C%3A2x%20%2B%2010y%20%3D%20260%20%5C%3A%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%281%29)
![{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:26x + 10y = 1340 \: \: \: \: \: (3)](https://tex.z-dn.net/?f=%7B%20%5Cqquad%7B%20%5Csf%7B%20%5Cdashrightarrow%7D%7D%7D%20%20%5C%3A%20%20%5C%3A%20%5Csf%20%5C%3A26x%20%2B%2010y%20%3D%201340%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%283%29)
Now, deduct equation (1) from equation (3)
![{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:26x + 10y - 2x - 10y = 1340 - 260](https://tex.z-dn.net/?f=%7B%20%5Cqquad%7B%20%5Csf%7B%20%5Cdashrightarrow%7D%7D%7D%20%20%5C%3A%20%20%5C%3A%20%5Csf%20%5C%3A26x%20%2B%2010y%20-%202x%20-%2010y%20%3D%201340%20-%20260)
![{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:24x = 1080](https://tex.z-dn.net/?f=%7B%20%5Cqquad%7B%20%5Csf%7B%20%5Cdashrightarrow%7D%7D%7D%20%20%5C%3A%20%20%5C%3A%20%5Csf%20%5C%3A24x%20%3D%201080)
![{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:x = 1080 \div 24](https://tex.z-dn.net/?f=%7B%20%5Cqquad%7B%20%5Csf%7B%20%5Cdashrightarrow%7D%7D%7D%20%20%5C%3A%20%20%5C%3A%20%5Csf%20%5C%3Ax%20%3D%201080%20%5Cdiv%2024)
![{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:x = 45](https://tex.z-dn.net/?f=%7B%20%5Cqquad%7B%20%5Csf%7B%20%5Cdashrightarrow%7D%7D%7D%20%20%5C%3A%20%20%5C%3A%20%5Csf%20%5C%3Ax%20%3D%2045)
Therefore each bus can carry (x) = 45 students
Now, plug the value of x in equation (1) to find y ~
![{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:2x + 10y = 260](https://tex.z-dn.net/?f=%7B%20%5Cqquad%7B%20%5Csf%7B%20%5Cdashrightarrow%7D%7D%7D%20%20%5C%3A%20%20%5C%3A%20%5Csf%20%5C%3A2x%20%2B%2010y%20%3D%20260)
![{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:(2 \times 45) + 10y = 260](https://tex.z-dn.net/?f=%7B%20%5Cqquad%7B%20%5Csf%7B%20%5Cdashrightarrow%7D%7D%7D%20%20%5C%3A%20%20%5C%3A%20%5Csf%20%5C%3A%282%20%5Ctimes%2045%29%20%2B%2010y%20%3D%20260)
![{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:90 + 10y = 260](https://tex.z-dn.net/?f=%7B%20%5Cqquad%7B%20%5Csf%7B%20%5Cdashrightarrow%7D%7D%7D%20%20%5C%3A%20%20%5C%3A%20%5Csf%20%5C%3A90%20%2B%2010y%20%3D%20260)
![{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:10y = 260 - 90](https://tex.z-dn.net/?f=%7B%20%5Cqquad%7B%20%5Csf%7B%20%5Cdashrightarrow%7D%7D%7D%20%20%5C%3A%20%20%5C%3A%20%5Csf%20%5C%3A10y%20%3D%20260%20-%2090)
![{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:10y = 170](https://tex.z-dn.net/?f=%7B%20%5Cqquad%7B%20%5Csf%7B%20%5Cdashrightarrow%7D%7D%7D%20%20%5C%3A%20%20%5C%3A%20%5Csf%20%5C%3A10y%20%3D%20170)
![{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:y = 170 \div 10](https://tex.z-dn.net/?f=%7B%20%5Cqquad%7B%20%5Csf%7B%20%5Cdashrightarrow%7D%7D%7D%20%20%5C%3A%20%20%5C%3A%20%5Csf%20%5C%3Ay%20%3D%20170%20%5Cdiv%2010)
![{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:y = 17](https://tex.z-dn.net/?f=%7B%20%5Cqquad%7B%20%5Csf%7B%20%5Cdashrightarrow%7D%7D%7D%20%20%5C%3A%20%20%5C%3A%20%5Csf%20%5C%3Ay%20%3D%2017)
Hence, each van can carry (y) = 17 students in total.
Answer:
3
Step-by-step explanation:
5-2=3
Just do it the other way to find the answer!
I hope this helps!
Answer:
The area of the shaded region is ![5.86\ cm^{2}](https://tex.z-dn.net/?f=5.86%5C%20cm%5E%7B2%7D)
Step-by-step explanation:
we know that
The area of the shaded region is equal to the area of the rectangle minus the area of the circle
The rectangle is a square
so
![A=b^{2} -\pi r^{2}](https://tex.z-dn.net/?f=A%3Db%5E%7B2%7D%20-%5Cpi%20r%5E%7B2%7D)
we have
![b=3\ cm](https://tex.z-dn.net/?f=b%3D3%5C%20cm)
![r=1\ cm](https://tex.z-dn.net/?f=r%3D1%5C%20cm)
assume
![\pi =3.14](https://tex.z-dn.net/?f=%5Cpi%20%3D3.14)
substitute the values
![A=3^{2} -(3.14)(1)^{2}](https://tex.z-dn.net/?f=A%3D3%5E%7B2%7D%20-%283.14%29%281%29%5E%7B2%7D)
![A=5.86\ cm^{2}](https://tex.z-dn.net/?f=A%3D5.86%5C%20cm%5E%7B2%7D)