<u>Answer:</u> The tendency of an element to react is closely related to the number of valence electrons in the element.
<u>Explanation:</u>
Chemical reactivity is defined as the tendency of an element to loose of gain electrons.
Metals tend to loose electrons and so their chemical reactivity is the tendency to loose electrons.
Non-metals tend to gain electrons and so their chemical reactivity is the tendency to gain electrons.
The number of electrons that an element will loose or gain depends on the number of valence electrons present around that element.
<u>For Example:</u> Chlorine has 7 valence electrons and need 1 electron to complete its octet, whereas sulfur has 6 valence electrons and need 2 electrons to complete its octet.
So, chlorine will gain 1 electron easily than sulfur and thus, is more reactive than sulfur.
Hence, the tendency of an element to react is closely related to the number of valence electrons in the element.
Answer:
When salt is dissolved in water, the particles of salt get into the spaces between particles of water and starts dissolving and disappear.
Explanation:
Answer:
because cycle is a prosess that goes through multiple stages
Explanation:
.
Answer:
How does the equilibrium change with the removal of hydrogen (H2) gas from this equation? 2H2S ⇌ 2H2(g) + S2(g) A. ... Equilibrium shifts left to produce less reactant.
Explanation:
option A is the correct answer
Equilibrium shifts right to produce more product.
I hope it will help you.
The Aufbau principle states that, hypothetically, electrons orbiting one or more atoms fill the lowest available energy levels before filling higher levels (e.g., 1s before 2s). In this way, the electrons of an atom, molecule, or ion harmonize into the most stable electron configuration possible.