Answer:
0.501 L
Explanation:
To solve this problem we will use Boyle,s Law. According to this law "The volume of given amount of gas is inversely proportional to applied pressure at constant temperature".
V∝ 1/P
V= K/P
VP=K
Here the K is proportionality constant.
so,
P1V1 = P2V2
P= pressure
V= volume
Given data:
P1= 1 atm
V1= 461 mL
P2= 0.92 atm
V2= ? (L)
To solve this problem we have to convert the mL into L first.
1 L = 1000 mL
461/1000= 0.461 L
Now we will put the values in the equation,
P1V1 = P2V2
V2= P1V1/ P2
V2= 1 atm × 0.461 L / 0.92 atm
V2= 0.501 L
<u>Answer:</u>
<em>1) ∆H is positive
Endothermic
</em>
<em>2)
Endothermic </em>
<em>3) Energy is absorbed
Endothermic
</em>
<em>4)
Exothermic
</em>
<em>5) ∆H is negtive
Exothermic
</em>
<em></em>
<u>Explanation:</u>
∆H is called as enthalpy change
It is also called as Heat of reaction
Energy is required for the bond to break a bond.
Energy is released when a bond is formed.

that is

We see in this equation, bonds between hydrogen and chlorine molecules gets broken and on the right side bond is formed in HCl.
If energy of products greater than energy of reactants then the reaction enthalpy change is endothermic .
If energy of products lesser than energy of reactants then the reaction enthalpy change is exothermic .
For example



(positive hence endothermic)



(negative hence exothermic)
Answer:
B, because that was the answer on quizlet.
Explanation:
The mass in grams of nitric acid that is required to react with 454g C7H8 is 932.72 grams
calculation
find the moles of C7H8 used
moles = mass/molar mass
= 454 g/92 = 4.935 moles
balanced reacting equation
C7H8 +3 HNO3 = C7H5N3O6 +3 H20
by use of mole ratio between C7H8 to HNo3 which is 1:3 the moles of HNO3 =4.935 x3 = 14.805 moles
mass of HNo3 = moles x molar mass
= 14.805 x 63 = 932.72 grams
part B
the mass of C7H5N3o6 = 2045.5 grams
calculate the moles of C7H8
= 829 g/92 g/mol = 9.011 moles
by use of mole ratio between C7H8 to C7H5N3O6 which is 1:1 the moles of C7H5N3O6 is also = 9.011 moles
mass of C7H5N3O6 is therefore = moles x molar mass
=9.011 x227 = 2045.5 grams