<u>Answer:</u> The Henry's law constant for oxygen gas in water is 
<u>Explanation:</u>
To calculate the molar solubility, we use the equation given by Henry's law, which is:

where,
= Henry's constant = ?
= solubility of oxygen gas = 
= partial pressure of oxygen gas = 2.1 atm
Putting values in above equation, we get:

Hence, the Henry's law constant for oxygen gas in water is 
An ecosystem is a geographic area where plants, animals, and other organisms, as well as weather and landscape, work together to form a bubble of life. Ecosystems contain biotic or living, parts, as well as abiotic factors, or nonliving parts. Biotic factors include plants, animals, and other organism .
Answer:
single replacement
Explanation:
Step 1: Data given
single replacement = A reaction in which one element replaces a similar element in a compound. For example, a metal replaces an other metal.
The general form of a single-replacement (also called single-displacement) reaction is:
A+BC→AC+B
Decomposition = a reaction in which a compound breaks down into two or more simpler substances. The general form of a decomposition reaction is:
AB→A+B
Synthesis = A reaction that occurs when one or more compounds combines to form a complex compound:
A + B → AB
Double replacement: a reaction in which the positive and negative ions of two ionic compounds exchange places to form two new compounds.
The general form of a double-replacement reaction is:
AB+CD→AD+BC
Combustion reaction = a reaction in which a substance reacts with oxygen gas, releasing energy in the form of light and heat. Combustion reactions must involve O2 as one reactant.
The reaction Zn + 2HCl → ZnCl2 + H2
⇒ Does not involve O2 = NOT a combustion reaction
⇒ The compounds do not form a complex compound = NOT a synthesis
⇒ A compound does not break down into smaller substances = NOT a decomposition
⇒ There is a replacement between Zn and H. This is a <u>single replacement</u>, not a double replacement reaction.
Answer:
7.5 moles of O₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2KClO₃ —> 2KCl + 3O₂
From the balanced equation above,
2 moles of KClO₃ decomposed to produce 3 moles of O₂.
Finally, we shall determine the number of mole of O₂ produced by the decomposition of 5 moles of KClO₃. This can be obtained as follow:
From the balanced equation above,
2 moles of KClO₃ decomposed to produce 3 moles of O₂.
Therefore, 5 moles of KClO₃ will decompose to produce = (5 × 3)/ 2 = 7.5 moles of O₂.
Thus, 7.5 moles of O₂ were obtained from the reaction.
I’m guessing you mean moles. So the big M stands for mol/L. That means first you’d want to convert your mL to L. To do this write your 250mL then make parenthesis for the conversion. 1L=1000mL
250mL(1L/1000mL). Since the mL is on the bottom in the parenthesis we can cancel them out. Now all we do is divide and keep the L.
.250L is what you get. Now we need to figure out how to cancel the L with what we have left. We know M stands for Moles/L so this means in order to get ride of L we need to multiply our new number times the 1.5
.250L X 1.5 moles
_______
1L
This gives us 0.375 moles NH4SO4