Answer:
- 0.99 °C ≅ - 1.0 °C.
Explanation:
- We can solve this problem using the relation:
<em>ΔTf = (Kf)(m),</em>
where, ΔTf is the depression in the freezing point.
Kf is the molal freezing point depression constant of water = -1.86 °C/m,
m is the molality of the solution (m = moles of solute / kg of solvent = (23.5 g / 180.156 g/mol)/(0.245 kg) = 0.53 m.
<em>∴ ΔTf = (Kf)(m)</em> = (-1.86 °C/m)(0.53 m) =<em> - 0.99 °C ≅ - 1.0 °C.</em>
Answer:
The Earth's surface is constantly changing through forces in nature. The daily processes of precipitation, wind and land movement result in changes to landforms over a long period of time. Driving forces include erosion, volcanoes and earthquakes. People also contribute to changes in the appearance of land.
Answer:
43 mole
Explanation:
Given data:
Number of atoms of Li = 2.6× 10²⁵ atoms
Number of moles = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ atoms
2.6× 10²⁵ atoms × 1 mole / 6.022 × 10²³ atoms
0.43 × 10² mole
43 mole
A cylindrical weight with a mass of 3 kg is dropped onto the piston from a height of 10 m. The entropy of the gas is 1.18 J/K and the change in the entropy of the environment is -1.18 J/K.
A cylindrical weight with a mass (m) of 3 kg is dropped, that is, its initial velocity (u) is 0 m/s and travels 10 m (s). Assuming the acceleration (a) is that of gravity (9.8 m/s²). We can calculate the velocity (v) of the weight in the instant prior to the collision with the piston using the following kinematic equation.

The object with a mass of 3 kg collides with the piston at 14 m/s, The kinetic energy (K) of the object at that moment is:

The kinetic energy of the weight is completely converted into heat transferred into the gas cylinder. Thus, Q = 294 J.
Given all the process is at 250 K (T), we can calculate the change of entropy of the gas using the following expression.

The change in the entropy of the environment, has the same value but opposite sign than the change in the entropy of the gas. Thus, 
A cylindrical weight with a mass of 3 kg is dropped onto the piston from a height of 10 m. The entropy of the gas is 1.18 J/K and the change in the entropy of the environment is -1.18 J/K.
Learn more: brainly.com/question/22655760