The preparation of lead (ii) sulphate from lead (ii) carbonate occurs in two steps:
- insoluble lead carbonate is converted to soluble lead (ii) nitrate
- soluble lead (ii) nitrate is reacted with sulphuric acid to produce lead (ii) sulphate.
<h3>How can a solid sample of lead (ii) sulphate be prepared from lead (ii) carbonate?</h3>
Lead (ii) carbonate and lead (ii) sulphate are both insoluble salts of lead.
In order to prepare lead (ii) sulphate, a two step process is performed.
In the first step, Lead (ii) carbonate is reacted with dilute trioxonitrate (v) acid to produce lead (ii) nitrate.
- PbCO₃ + 2HNO₃ → Pb(NO₃)₂ + CO₂ + H₂O
In the second step, dilute sulfuric acid is reacted with the lead (ii) nitrate to produce insoluble lead (ii) sulphate which is filtered and dried.
- Pb(NO₃)₂ + H₂SO₄ → PbSO₄ + 2HNO₃
In conclusion, lead (ii) sulphate is prepared in two steps.
Learn more about lead (ii) sulphate at: brainly.com/question/188055
#SPJ1
Answer:
C. Hair dryer
Explanation:
Alternating Current
The other kind of electricity is called alternating current, or AC. Power plants produce this
type of electricity. It is carried by large power lines from the plant to your home. When you
plug a TV, a lamp, or a hair dryer into the wall socket, you are using this type of electricity.
The factors that affect geometry of a molecule are
> The number of bonding electron pairs around the central atom.
> The number of pairs of non-bonding ("lone pair") electrons around the central atom.
In pure water, all of the molecules in the liquid are water molecules so the mole fraction is 1 (100 % H2O, 55 mol/L). In sea water, the concentration of water molecules in the solution is less than that of pure water so the vapor pressure of sea water is also lower.
Explanation:
Given problem:
Find the molar mass of:
SO₃ and C₁₀H₈
Solution:
The molar mass of a compound is the mass in grams of one mole of the substance.
To solve this, we are going to add the individual atomic masses of the elements in the compound;
Atomic mass;
S = 32g/mol; O = 16g/mol; C = 12g/mol and H = 1g/mol
For SO₃;
= 32 + 3(16)
= 32 + 48
= 80g/mol
For C₁₀H₈
= 10(12) + 8(1)
= 120 + 8
= 128g/mol