Answer:
Kc = 50.5
Explanation:
We determine the reaction:
H₂ + I₂ ⇄ 2HI
Initially we have 0.001 molesof H₂
and 0.002 moles of I₂
If we have produced 0.00187 moles of HI in the equilibrium we have to know, how many moles of I₂ and H₂, have reacted.
H₂ + I₂ ⇄ 2HI
In: 0.001 0.002 -
R: x x 2x
Eq: 0.001-x 0.002-x 0.00187
x = 0.00187/2 = 9.35×10⁻⁴ moles that have reacted
So in the equilibrium we have:
0.001 - 9.35×10⁻⁴ = 6.5×10⁻⁵ moles of H₂
0.002 - 9.35×10⁻⁴ = 1.065×10⁻³ moles of I₂
Expression for Kc is = (HI)² / (H₂) . (I₂)
0.00187 ² / 6.5×10⁻⁵ . 1.065×10⁻³ = 50.5
When 3.66 g of KOH (∆Hsol = -57.6 kJ/mol) is dissolved in 150.0 mL of solution, it causes a temperature change of 5.87 °C.
The enthalpy of solution of KOH is -57.6 kJ/mol. We can calculate the heat released by the solution (Qr) of 3.66 g of KOH considering that the molar mass of KOH is 56.11 g/mol.

According to the law of conservation of energy, the sum of the heat released by the solution of KOH (Qr) and the heat absorbed by the solution (Qa) is zero.

150.0 mL of solution with a density of 1.02 g/mL were prepared. The mass (m) of the solution is:

Given the specific heat capacity of the solution (c) is 4.184 J/g・°C, we can calculate the change in the temperature (ΔT) of the solution using the following expression.

When 3.66 g of KOH (∆Hsol = -57.6 kJ/mol) is dissolved in 150.0 mL of solution, it causes a temperature change of 5.87 °C.
Learn more: brainly.com/question/4400908
Answer:
6.53g of K₂SO₄
Explanation:
Formula of the compound is K₂SO₄
Given parameters:
Volume of K₂SO₄ = 250mL = 250 x 10⁻³L
= 0.25L
Concentration of K₂SO₄ = 0.15M or 0. 15mol/L
Unknown:
Mass of K₂SO₄ =?
Methods:
We use the mole concept to solve this kind of problem.
>>First, we find the number of moles using the expression below:
Number of moles= concentration x volume
Solving for number of moles:
Number of moles = 0.25 x 01.5
= 0.0375mole
>>Secondly, we use the number of moles to find the mass of K₂SO₄ needed. This can be obtained using the expression below:
Mass(g) = number of moles x molar mass
Solving:
To find the molar mass of K₂SO₄, we must know the atomic mass of each element in the compound. This can be obtained using the periodic table.
For:
K = 39g
S = 32g
O = 16g
Molar mass of K₂SO₄ = (39x2) + 32 + (16x4)
= 78 +32 + 64
= 174g/mol
Using the expression:
Mass(g) = number of moles x molar mass
Mass of K₂SO₄ = 0.0375 x 174 = 6.53g
Answer:
MOLAR MASS = 32 g/mol
Explanation:
Condition of standard temperature and pressure(STP) are as follow:
Temperature = 273 K
Pressure = 1 atm (or 100000 Pa)
Here atm is atmosphere and Pa is Pascal
STP conditions arte used for measuring gas density and volume using Ideal Gas Law.Here 1 mole of ideal gas occupies 22.4 L of volume.
According toi Ideal Gas Equation :
PV = nRT
where P = pressure, n= number of moles, V = volume ,R= Ideal Gas Constant and T= temperature

From question:
V=280 ml = 0.28 L
P = 1 atm
R=0.08205 L atm/K mol
T=273 K
Putting values in above formula :

n = 0.0125 moles
Now 

given mass = 0.4 g (given)

On solving we get:
Molar mass = 32 g/mol
Answer:
See explanation
Explanation:
The electron configuration of an atom in an element determines the property of the atom. The core electrons are found inside the atom while the valence electrons are found on the outermost shell of the atom.
For cobalt, the outermost shell electron configuration is; [Ar] 3d7 4s2. The 3d7 and 4s2 are found in the valence shell of cobalt.
For arsenic, the electronic configuration is [Ar] 3d¹⁰ 4s² 4p³. The valence electrons are 4s2, 4p3. The 3d electrons are found inside the arsenic atom.