1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
My name is Ann [436]
3 years ago
14

Anyone know the answer to this?

Mathematics
2 answers:
Leto [7]3 years ago
6 0

Answer:

1/8

Step-by-step explanation:

the cake was divided in 1/4ths so half of that is 1/8

AlladinOne [14]3 years ago
3 0

Answer:

1/8

Step-by-step explanation:

You might be interested in
What is his average speed for end the entire trip 280 miles<br> ?
-BARSIC- [3]

Answer:

20mph

Step-by-step explanation:

because when you divide the 280 it goes by 20 mph to get to 280 miles by quarters but in 20s

7 0
2 years ago
Factorise <br> a) 3x^2-7x+2<br> b)2x^2-x-3<br> c)3x^2-16x-12
Luba_88 [7]

Answer: Answers are in the steps read carefully!

Step-by-step explanation:

A) 3x^2 - 7x + 2 To factor this polynomial, you have to find two numbers that their product is 6 and their sum is -7.  The numbers -1 and -6 works out because -6 times -1 is 6  and -6 plus -1 is -7.

Now rewrite the polynomial as

3x^2 - 1x - 6x + 2   Now group it  

(3x^2 - 1x) (-6x+2)  Factor it by groups

x (3x -1)  -2(3x -1)    Now factor out 3x-1  

(3x -1) (x-2)  Done!    

B)  2x^2 - x -3     Now the same way.You will have two numbers that  their product is -6 and their sum is -1. You may be wondering how I get -6 .I get -6 by multiply the leading coefficient  2 by the constant -3.  The numbers -3 and 2 works out. Because -3 times 2 is -6 and -3 plus 2 is -1.

 Rewrite the polynomial as

2x^2 +2x - 3x -3     GRoup them and factor them

(2x^2 + 2x)  (-3x-3)  

2x(x+1) -3(x+1)  Factor out x+1

(x+1) (2x -3) Done!  

C) 3x^2 - 16x - 12   Find two numbers that their product is -36 and their sum is -12. The numbers -18 and 2 works out because -18 times 2 is -36 and -18 plus 2 is -16.

Rewrite the polynomial

3x^2 +2x -18x - 12   GRoup them

 (3x^2 + 2x)   (-18x - 12)   Factor them

x (3x +2) -6(3x +2)  Factor out 3x+2

(3x+2) (x -6)  Done !

6 0
4 years ago
Determine the vertex of the function f(x) = 3x2 – 6x + 13. 1. Identify the values of a and b. a = and b = 2. Find the x-coordina
Sveta_85 [38]
F(x)=3x²-6x+13
a=3, b=-6, c=13
the x coordinate of the vertex is x=-b/(2a), so x=-(-6)/(2*3)=1
when x=1, y=3(1)²-6(1)+13=10
the vertex is at (1,10)

answers are in bold. 
5 0
3 years ago
Read 2 more answers
HELP ASAP!!!
Umnica [9.8K]
Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

           (a)/(a^2-16)+(2/(a-4))-(2/(a+4))=0 

Simplify ————— a + 4 <span>Equation at the end of step  1  :</span><span> a 2 2 (—————————+—————)-——— = 0 ((a2)-16) (a-4) a+4 </span><span>Step  2  :</span> 2 Simplify ————— a - 4 <span>Equation at the end of step  2  :</span><span> a 2 2 (—————————+———)-——— = 0 ((a2)-16) a-4 a+4 </span><span>Step  3  :</span><span> a Simplify ——————— a2 - 16 </span>Trying to factor as a Difference of Squares :

<span> 3.1 </span>     Factoring: <span> a2 - 16</span> 

Theory : A difference of two perfect squares, <span> A2 - B2  </span>can be factored into <span> (A+B) • (A-B)

</span>Proof :<span>  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 <span>- AB + AB </span>- B2 = 
        <span> A2 - B2</span>

</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication. 

Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.

Check : 16 is the square of 4
Check : <span> a2  </span>is the square of <span> a1 </span>

Factorization is :       (a + 4)  •  (a - 4) 

<span>Equation at the end of step  3  :</span> a 2 2 (————————————————— + —————) - ————— = 0 (a + 4) • (a - 4) a - 4 a + 4 <span>Step  4  :</span>Calculating the Least Common Multiple :

<span> 4.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a-4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>101</span><span><span> a-4 </span>111</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 4.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a+4

Making Equivalent Fractions :

<span> 4.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

Two fractions are called <span>equivalent </span>if they have the<span> same numeric value.</span>

For example :  1/2   and  2/4  are equivalent, <span> y/(y+1)2  </span> and <span> (y2+y)/(y+1)3  </span>are equivalent as well. 

To calculate equivalent fraction , multiply the <span>Numerator </span>of each fraction, by its respective Multiplier.

<span> L. Mult. • L. Num. a —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a+4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 4.4 </span>      Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

a + 2 • (a+4) 3a + 8 ————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  4  :</span> (3a + 8) 2 ————————————————— - ————— = 0 (a + 4) • (a - 4) a + 4 <span>Step  5  :</span>Calculating the Least Common Multiple :

<span> 5.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a+4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>111</span><span><span> a-4 </span>101</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 5.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a-4

Making Equivalent Fractions :

<span> 5.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

<span> L. Mult. • L. Num. (3a+8) —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a-4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 5.4 </span>      Adding up the two equivalent fractions 

(3a+8) - (2 • (a-4)) a + 16 ———————————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  5  :</span> a + 16 ————————————————— = 0 (a + 4) • (a - 4) <span>Step  6  :</span>When a fraction equals zero :<span><span> 6.1 </span>   When a fraction equals zero ...</span>

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the <span>denominator, </span>Tiger multiplys both sides of the equation by the denominator.

Here's how:

a+16 ——————————— • (a+4)•(a-4) = 0 • (a+4)•(a-4) (a+4)•(a-4)

Now, on the left hand side, the <span> (a+4) •</span> (a-4)  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   a+16  = 0

Solving a Single Variable Equation :

<span> 6.2 </span>     Solve  :    a+16 = 0<span> 

 </span>Subtract  16  from both sides of the equation :<span> 
 </span>                     a = -16 

One solution was found :

                  <span> a = -16</span>

4 0
3 years ago
a class is having their picture taken. the photographer positions himself 21 feet from the center of the row of students. When t
Papessa [141]

Answer:

24

Step-by-step explanation:

tbh I am not sure if this is right but here

6 0
3 years ago
Other questions:
  • 1. Calvin goes shopping over the weekend and buys a new pair of shoes, a t-shirt, a pair of
    13·1 answer
  • The Pythagorean Theorem ONLY works on which triangle?​
    15·2 answers
  • Solve the system of equations.<br> y = -6x + 9<br> y = -3x + 3
    9·1 answer
  • Solve the following for y: 2x+2y=8
    10·2 answers
  • Where to Dig: You now know that the dinosaur's ribs and arms are at the solution to the system of equations below. Solve the sys
    9·2 answers
  • Suppose a sequence begins with 1, 3 and continues by adding the previous two numbers to get the next number in the sequence. In
    7·1 answer
  • PLEASSSSSE I NEED HELP BAD HELP PLEASE
    15·1 answer
  • Sammy has a recipe that needs 3/4 teaspoon of salt for every 2 cups of flour. if Sammy increases the amount of flour to 5 cups o
    15·1 answer
  • How do I factor this equation fully?
    6·1 answer
  • Can someone please help me its due by 11pm but I have to go somewhere by 6pm, any and all help will be appreciated. Also if you
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!