Answer:
(x, y) = (-1, 3), (-3, 115), (2, 0)
Step-by-step explanation:
The first two test points are <em>not roots</em>. The last one is a root.
Answer:
.. .. ..
o = N - F :
.. ..
Under the N just leave empty
Step-by-step explanation:
This is a polygon with vertices on the lattice. Let's use Pick's Theorem,
A = (1/2) B + I - 1
where A is the area, B is the number of lattice points on the boundary and I is the number of lattice points in the interior.
In addition to the 3 vertices there are 3 more boundary points on UV and 6 more on WV, none on UV, B=3+3+6=12. In the interior I count I=9 lattice points.
A = (1/2) 12 + 9 - 1 = 14
Answer: 14
Obviously they just want us to say this is a right triangle, so the legs are altitude and base,
A = (1/2) b h (1/2) |UW| |WV| = (1/2) (4) (7) = 14
That checks.
So, you will put the numerator inside the symbol and the 2 outside of it so like
429.5
_____
2/859.0
-8
_
05
- 4
--
19
-18
----
10
-10
----
0
So, your answer would be 429.5
or 429 r 1
The given equation, x.cosec²x = cot x - d/dx x.cot x, is proved using the product rule of differentials.
In the question, we are asked to show that x.cosec²x = cot x - d/dx x.cot x.
To prove, we go by the right-hand side of the equation:
cot x - d/dx x.cot x.
We solve the differential d/dx using the product rule, according to which, d/dx uv = u. d/dx(v) + v. d/dx(u), where u and v are functions of x.
cot x - {x. d/dx(cot x) + cot x. d/dx(x)}
= cot x - {x. (-cosec²x) + cot x} {Since, d/dx(cot x) = -cosec²x, and d/dx(x) = 1}
= cot x + x. cosec²x - cot x
= x. cosec²x
= The left-hand side of the equation.
Thus, the given equation, x.cosec²x = cot x - d/dx x.cot x, is proved using the product rule of differentials.
Learn more about differentials at
brainly.com/question/14830750
#SPJ1