Answer:
Venus is only 95% the size of Earth, and 81% of its mass. With the smaller size and mass, the force of gravity pulling you on the surface is lower. To get your weight on Venus, just multiply your current weight by 0.9. That's why 100 pounds becomes 90 pounds
Answer:
Balances and Scales
A balance compares an object with a known mass to the object in question. One example of a balance is the triple beam balance. The standard unit of measure for mass is based on the metric system and is typically denoted as kilograms or grams.
Answer:
15.38 m.
Explanation:
The kinetic energy of the block is equal to potential energy of spring at maximum compression
1/ 2 m V² = 1 /2 K X²
m is mass of block , V is its velocity , K is spring constant and X is maximum compression or its amplitude.
X = 
Putting the values
x = 
= 15.38 m.
The inaccurate measurements must be similar to the other two measurements (ex; 590, 589, 599), but different from the actual volume of water. (Ex; the actual volume is let say.. 100, but you measured 50, 49, 40)
Answer:
Explanation:
Work in pumping water from the tank is given as
W = ∫ y dF. From a to b
Where dF is the differential weight of the thin layer of liquid in the tank, y is the height of the differential layer
a is the lower limit of the height
b is the upper limit of the height.
We know that, .
F = ρVg
Where F is the weight
ρ is the density of water
V is the volume of water in tank
g is the acceleration due to gravity
Then,
dF = ρg ( Ady)
We know that the density and the acceleration due to gravity is constant, also the base area of the tank is constant, only the height that changes.
Then,
ρg = 62.4 lbs/ft³
Area = L×B = 3 × 9 = 27ft²
dF = ρg ( Ady)
dF = 1684.8dy
The height reduces from 12ft to 0ft
Then,
W = ∫ y dF. From a to b
W = ∫ 1684.8y dy From 0 to 12
W = 1684.8y²/2 from 0 to 12
W = 842.4 [y²] from y = 0 to y = 12
W = 842.4 (12²-0²)
W = 121,305.6 lb-ft