Answer: q = 2.781e-9C = 2.781nC
E=200C
Explanation:
E = Qd/(2πEor^3)
Where
E=Electric field intensity
Q=Charge
d=distance between the dipole=0.008m
Eo=permitivitty
400 N/C = Q(0.80e-2 m)/(2πε*(10e-2 m)^3)
Q= (400* 2* 3.142 * 8.85 x 10-12 * 0.1^3)/0.008
q = 2.781e-9C = 2.781nC
b)
Though the dipole are two separate charges. And since the point is on the x-axis, the electric field strengths are equivalent. The magnitude of the vector sum is:
E = kq*2sin θ/r^2
= 2(8.99e9 N*m^2/C^2)(2.781e-9 C)*sin(arctan(.4/10))/(10e-2 m)^2
= 2(8.99e9) * (2.781e-9) * sin(2.290)/(10e-2 m)^2
=200 C
The emf induced = B*l*v where B is the flux density, l the length of the conductor and v the velocity of the conductor. In the given case B = 0.035 N/amp.meter, l = 0.86 and v = 6 m/sec
emf = 0.035*0.86*6 = 0.1806 v ≈ 0.18 v
choice: D
Answer:
Option D is the correct answer.
Explanation:
Refer the figure given.
By Pascal's principle we have

F2 = 2 x 10⁴ N

Substituting

Option D is the correct answer.
The answer is B. The nuclei of elements.