Answer:
Explanation:
Given : Density - 2.41 g/liter
Temperature - 25° C
Pressure : 770 mm Hg
R = 0.0821 L atm mol-¹K-¹
Find : Molecular mass of gas
Solution : Ideal gas equation with respect to density will be : PM = dRT. In the formula, P is pressure, M is molecular mass, d is density, R is gas constant and T is temperature.
Keeping the values in equation-
Pressure : 770 mm Hg = 1 atm
Temperature : 273 + 25 = 298 K
M = dRT/P
M = (2.41*0.0821*298)/1
M = 58.96 gram/mol
Thus, the molecular mass of gas is 58.96 gram/mol.
The answer to this question would be C. I hope this helps!
Answer:
2.4 mole of oxygen will react with 2.4 moles of hydrogen
Explanation:
As we know
1 liter = 1000 grams
2H2 + O2 --> 2H2O
Weight of H2 molecule = 2.016 g/mol
Weight of water = 18.01 gram /l
2 mole of oxygen react with 2 mole of H2
2.4 mole of oxygen will react with 2.4 moles of hydrogen
Answer:
Explanation:
The formula relating the mass m of a sample and the heat q to vaporize it is
q = mL, where L is the latent heat of vaporization.
