Answer:
6.49g
Explanation:
Let's consider the balanced reaction for photosynthesis.
6 CO₂ + 6 H₂O = C₆H₁₂O₆ + 6 O₂
We can establish the following relations:
- 1 mole of CO₂ has a mass of 44.01 g (MW 44.01)
- The molar ratio of CO₂ to C₆H₁₂O₆ is 6:1.
- 1 mole of C₆H₁₂O₆ has a mass of 180.16 g/mol.
The mass of glucose produced by the reaction of 9.51 g of carbon dioxide is:

Eubacteria is a unicellular organism because they are made of one cell. Hope this helps! :)
Answer:
A) 29.9g
Explanation:
first find the weight of 1 staple.
then multiply with 225
<h3><u>Full Question:</u></h3>
The following compound has been found effective in treating pain and inflammation (J. Med. Chem. 2007, 4222). Which sequence correctly ranks each carbonyl group in order of increasing reactivity toward nucleophilic addition?
A) 1 < 2 < 3
B) 2 < 3 < 1
C) 3 < 1 < 2
D) 1 < 3 < 2
<h3><u>Answer: </u></h3>
The rate of nucleophilic attack of carbonyl compounds is 2<3 <1.
Option B
<h3><u>Explanation. </u></h3>
Nucleophilic attack is explained as the attack of an electron rich radical to a carbonyl compound like aldehyde or a ketone. A nucleophile has a high electron density, so it searches for a electropositive atom where it can donate a portion of its electron density and become stable.
A carbonyl compound is a
hybridized carbon atom with a double bonded oxygen atom in it. The oxygen atom pulls a huge portion of electron density from carbon being very electropositive.
In a ketone, there are two factors that make it less likely to undergo a nucleophilic attack than aldehyde. Firstly, the steric hindrance of two carbon groups being attached with the carbonyl carbon makes it harder for the nucleophile to approach. Secondly, the electron push by the carbon groups attached makes the carbonyl carbon a bit less electropositive than the aldehyde one. So aldehydes are more reactive towards a nucleophilic addition reaction.
Is this a multi choice question?????????????????????