The equation of state for a hypothetical ideal gas is known as the ideal gas law, sometimes known as the general gas equation. i.e. PV = nRT or P1V1 = P2V2.
- According to the ideal gas law, the sum of the absolute temperature of the gas and the universal gas constant is equal to the product of the pressure and volume of one gram of an ideal gas.
- Robert Boyle, Gay-Lussac, and Amedeo Avogadro's observational work served as the basis for the ideal gas law. The Ideal gas equation, which simultaneously describes every relationship, is obtained by combining all of their observations into a single statement.
- When applying the gas constant R = 0.082 L.atm/K.mol, pressure, volume, and temperature should all be expressed in units of atmospheres (atm), litres (L), and kelvin (K).
- At high pressure and low temperature, the ideal gas law basically fails because molecule size and intermolecular forces are no longer negligible but rather become significant considerations.
Learn more about ideal gas law here:
brainly.com/question/26040104
#SPJ9
The bones of the same animal found out continents far away from each other
Answer:
C₆H₈O₇+ 3NaHCO₃ --› Na₃C₆H₅O₇ + 3CO2 + 3H₂O
Explanation:
The reaction occuring in lava lamp is acid base reaction.
When you drop tablet into water the citric acid reacts with sodium bicarbonate and forms water, a salt, and bubbles of carbon dioxide gas.
Answer:
The answer is the letter A.
Explanation:
It is letter A because of Chlorine needs an electron to have a full shell. So, it will receive a negative one because it is gaining an electron. Potassium lost an electron because the element has to share the electron with Chlorine to balance its properties.
Well, all of this we owe it to Bohr who analyzed the atomic emission spectrum of hydrogen and he could probe matematically that it was a result of movement of e- from an especific energy level to a lower one. The understanding of levels of energy took to the development of the atomic theory