Observation one
From the markings on the diagram <1 = 60o The left triangle is at least isosceles. Therefore equal sides produce equal angles opposite them.
Now we have accounted for 2 angles that are equal (each is 60 degrees) and add up to 120 degrees. The third angle (angle 2) is found from this equation.
<1 + 60 + <2 = 180 degrees. All triangles have 180 degrees.
60 + 60 + <2 = 180
Observation 2
<2 = 60 degrees.
120 + <2 = 180
m<2 = 180 - 120
m<2 = 60 degrees.
Observation 3
m<3 = 120
<2 and <3 are supplementary.
Any 2 angles on the same straight line are supplementary
60 + <3 = 180
<3 = 180 - 60
<3 = 120
Observation 4
m<4 = 40 degrees.
All triangles have 180 degrees. No exceptions.
m<4 + 20 +m<3 = 180
m<4 + 20 + 120 = 180
m<4 + 140 = 180
m<4 = 180 - 140
m<4 = 40
All you have to do is divide the ounces he has into how much he gives the dog each day so 128/8 is 16
Answer:
cjvnvhhvhjgufvjffuhghhhvc
Speed of the plane: 250 mph
Speed of the wind: 50 mph
Explanation:
Let p = the speed of the plane
and w = the speed of the wind
It takes the plane 3 hours to go 600 miles when against the headwind and 2 hours to go 600 miles with the headwind. So we set up a system of equations.
600
m
i
3
h
r
=
p
−
w
600
m
i
2
h
r
=
p
+
w
Solving for the left sides we get:
200mph = p - w
300mph = p + w
Now solve for one variable in either equation. I'll solve for x in the first equation:
200mph = p - w
Add w to both sides:
p = 200mph + w
Now we can substitute the x that we found in the first equation into the second equation so we can solve for w:
300mph = (200mph + w) + w
Combine like terms:
300mph = 200mph + 2w
Subtract 200mph on both sides:
100mph = 2w
Divide by 2:
50mph = w
So the speed of the wind is 50mph.
Now plug the value we just found back in to either equation to find the speed of the plane, I'll plug it into the first equation:
200mph = p - 50mph
Add 50mph on both sides:
250mph = p
So the speed of the plane in still air is 250mph.
Answer: A= (3,-3) . B(4,1). C= (1,0)
Step-by-step explanation: