-3.5 * 2 = -7
-3.5 * 3n = 10.5n
So there is (-7 - 10.5n) -2.5n
Now combine like terms
10.5n - 2.5n = 8n
ANSWER = -7 + 8n
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111122222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333344444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444445555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555566666666666666666666666666666666666666666666666666666666666666666666666666666677777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
Answer:
1a expression
1b equation
1c equation
1d expression
1e expression
1f equation
Step-by-step explanation:
Equations have an equals sign, expressions do not
1a expression
1b equation
1c equation
1d expression
1e expression
1f equation
Answer:
12-12, it's a decrease so you subtract.
Answer:
The probability that none of the 10 calls result in a reservation is 0.60%. In turn, the probability that at least one call results in a reservation being made is 99.40%.
Step-by-step explanation:
Since approximately 40% of the calls to an airline reservation phone line result in a reservation being made, supposing an operator handles 10 calls, to determine what is the probability that none of the 10 calls result in a reservation, and what is the probability that at least one call results in a reservation being made, the following calculations must be performed:
0.6 ^ 10 = X
0.006 = X
0.006 x 100 = 0.60%
Therefore, the probability that none of the 10 calls result in a reservation is 0.60%.
100 - 0.60 = 99.40
In turn, the probability that at least one call results in a reservation being made is 99.40%.