The answer for this is 42. just subtract 152 from 68 and then divide that by 2.
Answer:
1,500
Step-by-step explanation:
1,382 + 966
Rounding to the nearest hundred would be:
1,400 + 1000
= 1,500
The answer is 90 + 45 because BOC is a right angled triangle where angle BOC is 90 and angle BOK is 45 because 90 ÷2. A OK Is a right angled triangle so angle AOB is 90 as well so to find angle AOK we plus 90 and 45 which is 135 degrees.
By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7
Solution for x+4=10 equation:
1x + 4 = 10
1x = 10 - 4
1x = 6 (divide both sides by 1 to get x)
1x/1 = 6/1
x = 6
I hope this helped.